Close
  Indian J Med Microbiol
 

Figure 29: Stress analysis using a finite element analysis model. (a) A finite element analysis model of a root canal. When the ProTaper F3 and ProFile #30/.06 were used, they generated von Mises stress of 386 MPa and 311 MPa, respectively, in the outer layer of the root. These stress values were 3 times higher than the tensile strength of dentin, 106 MPa (adapted from Kim et al. 2010).[60] (b) The von Mises stress generated by the action of the ProFile #20/.06, ProTaper F1 and the SAF in a fi nite element analysis model. Black: The ProTaper F1; red: The ProFile #20/06; blue: The SAF. Please note: The thin (size 20 tip) ProTaper and ProFile generate stress within the limits of the tensile strength of dentin (100 MPa) (adapted from Kim et al. 2013).[92] The clinical implication is that thin rotary files, such as the ProFile #20/.04, may be used for glide path preparation of the SAF without risking the integrity of the dentin

Figure 29: Stress analysis using a finite element analysis model. (a) A finite element analysis model of a root canal. When the ProTaper F3 and ProFile #30/.06 were used, they generated von Mises stress of 386 MPa and 311 MPa, respectively, in the outer layer of the root. These stress values were 3 times higher than the tensile strength of dentin, 106 MPa (adapted from Kim <i>et al</i>. 2010).<sup>[60]</sup> (b) The von Mises stress generated by the action of the ProFile #20/.06, ProTaper F1 and the SAF in a fi nite element analysis model. Black: The ProTaper F1; red: The ProFile #20/06; blue: The SAF. Please note: The thin (size 20 tip) ProTaper and ProFile generate stress within the limits of the tensile strength of dentin (100 MPa) (adapted
from Kim <i>et al</i>. 2013).<sup>[92]</sup> The clinical implication is that thin rotary files, such as the ProFile #20/.04, may be used for glide path preparation of the SAF without risking the integrity of the dentin