Journal of Conservative Dentistry
Home About us Editorial Board Instructions Submission Subscribe Advertise Contact e-Alerts Login 
Users Online: 613
Print this page  Email this page Bookmark this page Small font sizeDefault font sizeIncrease font size
ORIGINAL ARTICLE
Year : 2020  |  Volume : 23  |  Issue : 1  |  Page : 79-85

Novel bioactive caries-detecting dye solution: Cytotoxicity, antimicrobial activity, scanning electron microscope, and stereomicroscopic analysis in diagnosis of dental caries


1 Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
2 Department of Conservative Dentistry and Endodontics, Sriram Chandra Bhanja Dental College and Hospital, Cuttack, Odisha, India
3 Department of Oral Pathology and Microbiolgy, Institute of Dental Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
4 Department of Physics, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India

Correspondence Address:
Prof. Amit Jena
B.122 HIG BDA Duplex Baramunda, Bhubaneswar - 751 003, Odisha
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/JCD.JCD_154_20

Rights and Permissions

Aim: The aim was (1) to study the cytotoxicity of novel Bioactive Caries-detecting Dye solution (BCD) and its antimicrobial activity against Streptococcus mutans, Lactobacillus acidophilus, Actinomyces naeslundii, and Candida albicans and (2) comparative assessment of BCD and Carie-Care for efficient removal of caries (stereomicroscope) and dentin tubule occlusion (scanning electron microscope [SEM]). Materials and Methods: For BCD cytotoxic study (direct contact method), colorimetric MTT assay, and cell line study(L929 mouse fibroblast NCTC clone 929 strain L) was performed. Xenetix 350, chitosan, nanohydroxyapatite (nHA), BCD, and Carie-Care solutions were subjected to the antimicrobial activity through blood agar well diffusion method, and the minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined. On 20 extracted human carious teeth a comparative pilot study was done for BCD (Group A, n = 10) and Carie-Care (Group B, n = 10), and evaluated visually and radiographically. After mechanical excavation of caries with a spoon excavator, teeth sectioned longitudinally and stereomicroscopically were evaluated (8x–40x) by two observers. The percentage of dentinal tubule occlusion was evaluated with SEM for both solutions. Statistical kappa analysis of agreement was 0.7–0.8 (P < 0.01). Mann–Whitney test ranks and Wilcoxon signed-rank test (P = 0.01) were applied. Results: Cytotoxicity test revealed BCD to be nontoxic and biocompatible. Antimicrobial tests (zone of inhibition) showed BCD > chitosan > chlorhexidine > Carie-Care > Xenetix 350 > nHA. MIC and MBC values suggested chlorhexidine > BCD > Carie-Care. Stereomicroscopic analysis showed effective mechanical removal of caries in BCD without residual dye in the dentinal tubules as compared to Carie-Care. Dentinal tubule occlusion (SEM analysis) was 80%–85% for BCD and 10% for Carie-Care. Conclusions: Profound synergistic effect for BCD was observed with advantage of radiographic assessment.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed115    
    Printed0    
    Emailed0    
    PDF Downloaded29    
    Comments [Add]    

Recommend this journal