|
|
Year : 2016 | Volume
: 19
| Issue : 4 | Page : 377-380 |
|
Mineral trioxide aggregate apexification: A novel approach |
|
Aamir Rashid Purra, Fayaz Ahmed Ahangar, Sachin Chadgal, Riyaz Farooq
Department of Conservative Dentistry and Endodontics, Government Dental College and Hospital, Srinagar, Jammu and Kashmir, India
Click here for correspondence address and email
Date of Submission | 26-Mar-2016 |
Date of Decision | 11-May-2016 |
Date of Acceptance | 10-Jun-2016 |
Date of Web Publication | 18-Jul-2016 |
|
|
 |
|
Abstract | | |
The treatment of choice for necrotic teeth with immature root is apexification, which is induction of apical closure to produce more favorable conditions for conventional root canal filling. The most commonly advocated medicament is calcium hydroxide although recently considerable interest has been expressed in the use of mineral trioxide aggregate (MTA). MTA offers the option of a two-visit apexification procedure so that the fragile tooth can be restored immediately. However, difficulty in placing the material in the wide apical area requires the use of an apical matrix. Materials such as collagen, calcium sulfate, and hydroxyapatite have been used for this purpose. This article describes the use of resorbable suture material to form the apical matrix which offers many advantages over the contemporary materials. Keywords: Apexification; matrix; mineral trioxide aggregate; resorbable suture
How to cite this article: Purra AR, Ahangar FA, Chadgal S, Farooq R. Mineral trioxide aggregate apexification: A novel approach. J Conserv Dent 2016;19:377-80 |
Introduction | |  |
Management of immature root with a necrotic pulp and apical periodontitis is a challenging task. The infected root canal space cannot be disinfected with the standard protocol. Obturation of the root canal is difficult because of lack of apical barrier for containing the root filling material. Treatment of choice in such cases is the apexification procedure, i.e., establishing an apical barrier. Calcium hydroxide has been widely used for the induction of hard tissue barrier. However, this material requires 5–20 months to form the hard tissue barrier.[1] It has also been shown that the use of calcium hydroxide weakens the resistance of the dentin to fracture.[2] In recent times, mineral trioxide aggregate (MTA) has gained widespread popularity for the apexification procedure. It produces apical hard tissue formation with significantly greater consistency than calcium hydroxide.[3] MTA, a biocompatible material, can be used to create a physical barrier. It also helps in the formation of bone and periodontium around its interface.[4] A bonded restoration can be placed without any delay, thus reducing the possibility of root fractures. Various authors have reported clinical success using MTA for one-visit apexification. The major disadvantage of MTA is its manipulation due to which its placement in the wide apical area is difficult to achieve. A matrix can be used in apexification procedures against which MTA can be placed and condensed. Use of an apical matrix allows for the predictable placement and judicious use of this expensive material. Several materials have been recommended to create a matrix including calcium sulfate, hydroxyapatite, resorbable collagen, and platelet-rich fibrin.[5],[6],[7] In this case series, we are presenting two cases of MTA apexification using polyglactin-based resorbable suture material as the apical matrix.
Case Reports | |  |
Case 1
A 16-year-old male patient reported with a chief complaint of discolored maxillary left central incisor. History revealed that the patient had suffered trauma 8 years back and undergone treatment in a private clinic. The medical history was not significant. Clinical examination revealed grayish discoloration of tooth 21 and attempted access preparation in the same tooth. The tooth did not demonstrate any abnormal mobility or sensitivity to percussion. Both cold and electric sensibility tests failed to elicit any response. Periapical radiograph showed well-defined periapical radiolucency and wide open apex in relation to tooth 21 [Figure 1]a. The final diagnosis was pulpal necrosis with chronic apical periodontitis in relation to tooth 21. After discussing different treatment options with the patient's parents, we opted to go for MTA apexification with the use of an apical matrix. Written consent was obtained from the guardian of the patient. After rubber dam isolation, the tooth 21 was accessed and working length was established radiographically [Figure 1]b. Root canal was chemo-mechanically debrided with circumferential filing using the International Organization for Standardization (ISO) 80 K-file (Dentsply Maillefer, Switzerland) in conjunction with copious amount of 0.5% sodium hypochlorite (Shivam Industries, India). A volume of 3 ml of 17% ethylenediaminetetraacetic acid (EDTA) solution (Prevest Denpro, India) was used for smear layer removal. ApexCal medicament paste (Ivoclar Vivadent AG Schaan, Liechtenstein) was placed in the root canal, and access cavity was restored with Temp Paste (Pyrex Exports, India). One week later, tooth was again accessed under rubber dam isolation, and copious amount of normal saline was used to remove any remnants of the calcium hydroxide medicament. Canal was thoroughly dried with absorbent paper points (Meta BioMed, Korea). Polyglactin-based resorbable suture material Vicryl (Johnson and Johnson Ltd., India) was used for the formation of apical matrix. One end of the suture material was modified to form a mesh, whereas the other end is left as such so that it could be used to adjust the position of apical matrix [Figure 1]c. Suture material was saturated with iodine-based radiographic contrast medium iopamidol (Bracco, Italy) for 10 min to render it radio-opaque [Figure 1]d. The matrix was gently placed on working length with the help of preselected hand pluggers [Figure 1]e, and its position was verified using radiographs [Figure 1]f. Any adjustment required was done using the hand pluggers or free end of the suture material. White MTA Angelus (Angelus, Londrina, PR, Brazil) was mixed according to manufacturer's instructions and using hand pluggers, gently condensed against the matrix to form 4 mm of apical plug [Figure 1]g. After placing a moist cotton pellet, the access cavity was restored with Temp Paste (Pyrex Exports, India). Next day, root canal was obturated using lateral condensation of Gutta-percha (Meta BioMed, Korea) and AH-Plus root canal sealer (Dentsply Detrey GMBH, Germany), and tooth was restored with Brilliant NG bonded resin restoration (Coltene/Whaledent, Switzerland) [Figure 1]h. The patient was recalled after 3 months for clinical and radiographic evaluation. At the follow-up visit, clinical examination revealed normal mobility, probing depths, and normal function without symptoms. Radiograph demonstrated the resorption of the apical matrix and healing periapical lesion [Figure 1]i. | Figure 1: (a) Preoperative, (b) working length radiograph, (c-f) formation and placement of suture matrix, (g) mineral trioxide aggregate plug, (h) immediate postoperative, and (i) 3 month follow-up
Click here to view |
Case 2
A 15-year-old female patient presented with the chief complaint of discomfort while chewing in front region of upper jaw. Patient gave a history of traumatic incident 9 years back for which she had visited a private clinic. Medical history was insignificant. Clinical examination revealed slightly grayish discolored tooth 21 and previously attempted treatment in the same tooth. The tooth was tender to percussion. Tooth also did not respond to cold and electric pulp vitality tests. Intraoral periapical radiograph showed a well-defined periapical radiolucency surrounding the wide open apex of tooth 21 [Figure 2]a. Diagnosis was pulpal necrosis with chronic apical periodontitis. After detailed discussion with the patient, we decided to perform MTA apexification procedure. Written consent was obtained from the patient's parents. After rubber dam isolation, tooth was assessed and working length determined using the radiograph [Figure 2]b. Root canal debridement was done using ISO 80 K-file (Dentsply Maillefer, Switzerland) and 0.5% sodium hypochlorite (Shivam Industries, India). A volume of 3 ml of 17% EDTA solution (Prevest Denpro, India) was used for smear layer removal. Root canal was medicated with ApexCal paste (Ivoclar Vivadent AG Schaan, Liechtenstein) for 1 week. After 1 week, 4 mm of MTA plug was formed by condensing white MTA Angelus (Angelus, Londrina, PR, Brazil) against Vicryl suture (Johnson and Johnson Ltd., India) apical matrix [Figure 2]c and [Figure 2]d. Next day, the tooth was obturated using laterally condensed Gutta-percha (Meta BioMed, Korea) and AH-Plus (Dentsply Detrey GMBH, Germany) [Figure 2]e. Bonded composite resin Brilliant NG (Coltene/Whaledent, Switzerland) was used for definitive restoration. At the 3-month follow-up visit, the patient was asymptomatic, and the tooth showed no tenderness on percussion. Periapical radiograph revealed resorbed apical matrix and healing periapical lesion in relation to tooth 21 [Figure 2]f. | Figure 2: (a) Preoperative, (b) working length determination, (c) suture matrix in place, (d) mineral trioxide aggregate plug, (e) immediate postoperative, and (f) 3 month follow-up
Click here to view |
Discussion | |  |
Apexification is defined as a method to induce a calcified barrier in a root with an open apex or the continued apical development of an incomplete root in teeth with necrotic pulp. This barrier is mandatory to allow the compaction of the root filling material. Calcium hydroxide has been considered as an efficient material for this purpose.[8] This chemical has several disadvantages such as difficulty of the patient's recall management and delay in the treatment.[9] Furthermore, there is a risk of tooth fracture after dressing with calcium hydroxide for extended periods.[2] The most promising alternative to calcium hydroxide is MTA.[10] The advantages of this material are (i) reduction in treatment time, (ii) immediate restoration of the tooth, (iii) no adverse effect on the mechanical properties of root dentin. In a prospective study, apexification treatment with MTA showed a high prevalence of healing and apical closure.[11] The main disadvantage of MTA is its difficult manipulation. Placement of the material in a wide open area is a challenging task and also there is a risk of extruding this expensive material into periapical tissues. Lemon advocated the use of a matrix when the diameter of the perforation is larger than 1 mm to prevent the extrusion of sealing material. Similarly, a matrix can be used for the predictable placement of MTA in apexification procedures. Use of matrix provides a base against which the MTA can be packed.[12] Various materials have been advocated to be used as a matrix, for example, calcium sulfate, hydroxyapatite, collagen, platelet-rich fibrin. However, the materials mentioned are either not cost-effective or technique sensitive. Calcium sulfate has a very short setting time of 2 min.[13] Hydroxyapatite is an expensive material. The common limitation shared by these materials is that once placed their position can't be adjusted as required. These problems have been solved by the novel technique used in our cases. We used Vicryl, a resorbable suture material to form the apical matrix. Vicryl is a synthetic absorbable suture material composed of 90% polyglycolic acid and 10% polylactic acid. It resorbs within 56–70 days by hydrolysis.[14] It has better tissue reaction than catgut sutures.[15] It is commonly used in subcutaneous, intracutaneous, abdominal, and thoracic surgeries. However, the suture material lacks the radio-opacity which makes it difficult to be viewed in the radiographs. Iopamidol was used in our technique to impart radio-opacity to the suture material. It is a water soluble nonionic iodine-based contrast medium which is routinely used for angiography, arteriography, contrast-enhanced computed tomography, and urography. However, a proper history of the patient and sensitivity test should be done before using it. In our technique, one end of the suture material was used for the matrix formation, whereas other end was kept outside the tooth so that the placement of the matrix can be adjusted as required. No other known technique has this provision. After the matrix was placed at the desired position, the free end of the suture was cutoff and then MTA was condensed against it. The apical matrix mentioned here in our study is cost-effective, easily available, and provides for adjustment of its position.
Conclusion | |  |
Resorbable suture with a contrast agent may be used as a matrix for MTA placement but properly designed clinical trials with long-term follow-up are mandatory to support this novel technique as there is no evidence of such procedure available in the literature presently. Research concentrating on the effect of suture material and contrast media on the healing kinetics can further through some light on this technique.
Financial support and sponsorship
Nil.
Conflicts of interest
There are no conflicts of interest.
References | |  |
1. | Sheehy EC, Roberts GJ. Use of calcium hydroxide for apical barrier formation and healing in non-vital immature permanent teeth: A review. Br Dent J 1997;183:241-6. |
2. | Andreasen JO, Farik B, Munksgaard EC. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol 2002;18:134-7. |
3. | Shabahang S, Torabinejad M, Boyne PP, Abedi H, McMillan P. A comparative study of root-end induction using osteogenic protein-1, calcium hydroxide, and mineral trioxide aggregate in dogs. J Endod 1999;25:1-5. |
4. | Torabinejad M, Pitt Ford TR, McKendry DJ, Abedi HR, Miller DA, Kariyawasam SP. Histologic assessment of mineral trioxide aggregate as a root-end filling in monkeys. J Endod 1997;23:225-8. |
5. | Alhadainy HA, Himel VT, Lee WB, Elbaghdady YM. Use of a hydroxylapatite-based material and calcium sulfate as artificial floors to repair furcal perforations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;86:723-9. |
6. | Bargholz C. Perforation repair with mineral trioxide aggregate: A modified matrix concept. Int Endod J 2005;38:59-69. |
7. | Yadav P, Pruthi PJ, Naval RR, Talwar S, Verma M. Novel use of platelet-rich fibrin matrix and MTA as an apical barrier in the management of a failed revascularization case. Dent Traumatol 2015;31:328-31. |
8. | Chosack A, Sela J, Cleaton-Jones P. A histological and quantitative histomorphometric study of apexification of nonvital permanent incisors of vervet monkeys after repeated root filling with a calcium hydroxide paste. Endod Dent Traumatol 1997;13:211-7. |
9. | Dominguez Reyes A, Muñoz Muñoz L, Aznar Martín T. Study of calcium hydroxide apexification in 26 young permanent incisors. Dent Traumatol 2005;21:141-5. |
10. | Witherspoon DE, Ham K. One-visit apexification: Technique for inducing root-end barrier formation in apical closures. Pract Proced Aesthet Dent 2001;13:455-60. |
11. | Simon S, Rilliard F, Berdal A, Machtou P. The use of mineral trioxide aggregate in one-visit apexification treatment: A prospective study. Int Endod J 2007;40:186-97. |
12. | Rafter M, Baker M, Alves M, Daniel J, Remeikis N. Evaluation of healing with use of an internal matrix to repair furcation perforations. Int Endod J 2002;35:775-83. |
13. | Khatavkar RA, Hegde VS. Use of a matrix for apexification procedure with mineral trioxide aggregate. J Conserv Dent 2010;13:54-7.  [ PUBMED] |
14. | Aston SJ, Rees TD. Vicryl sutures. Aesthetic Plast Surg 1976;1:289-93. |
15. | Conn J Jr., Oyasu R, Welsh M, Beal JM. Vicryl (polyglactin 910) synthetic absorbable sutures. Am J Surg 1974;128:19-23. |

Correspondence Address: Dr. Aamir Rashid Purra Department of Conservative Dentistry and Endodontics, Government Dental College and Hospital, Srinagar, Jammu and Kashmir India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/0972-0707.186443

[Figure 1], [Figure 2] |
|
This article has been cited by | 1 |
Management of infected radicular cyst associated with immature maxillary permanent lateral incisor: a conservative surgical approach |
|
| Dipika Yadav, Rajeev Kumar Singh, Aravindhan Arumugam, Jyoti Solanki | | BMJ Case Reports. 2023; 16(4): e254561 | | [Pubmed] | [DOI] | | 2 |
Innovative methods for the treatment of pulpitis in permanent teeth with unformed roots in children |
|
| R.I. Ermakov, E.V. Ekimov | | Scientific Bulletin of the Omsk State Medical University. 2023; 3(1): 49 | | [Pubmed] | [DOI] | | 3 |
ENDODONTIC MANAGEMENT OF TOOTH WITH OPEN APEX USING MTA AND AN APICAL BARRIER: A CASE REPORT |
|
| Shivani Chikara, Rohit Kochhar, Manju Kumari, Ananya Sharma | | INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH. 2022; : 23 | | [Pubmed] | [DOI] | | 4 |
Radiographic differences observed following apexification vs revascularization in necrotic immature molars and incisors: a follow-up study of 18 teeth |
|
| C. Caleza-Jiménez, D. Ribas-Pérez, M. Biedma-Perea, B. Solano-Mendoza, A. Mendoza-Mendoza | | European Archives of Paediatric Dentistry. 2022; | | [Pubmed] | [DOI] | | 5 |
Effect of Duration of Root Canal Infection on the Ability of Dentin-Pulp Complex Regeneration of Immature Permanent Teeth: An Animal Study |
|
| Pedram Iranmanesh, Mahmoud Torabinejad, Masoud Saatchi, Davood Toghraie, Sayed Mohammad Razavi, Abbasali Khademi | | Journal of Endodontics. 2022; | | [Pubmed] | [DOI] | | 6 |
Complexities in endodontics: A case series |
|
| Aryama Balodi, Anil Dhingra, Anshdeep Singh, Unnati, Rishika, Ayushi | | IP Indian Journal of Conservative and Endodontics. 2021; 6(4): 239 | | [Pubmed] | [DOI] | | 7 |
A Novel Sol-Gel Bi2-xHfxO3+x/2 Radiopacifier for Mineral Trioxide Aggregates (MTA) as Dental Filling Materials |
|
| Tzu-Sen Yang, May-Show Chen, Cheng-Jyun Huang, Chin-Yi Chen, Agnese Brangule, Aleksej Zarkov, Aivaras Kareiva, Chung-Kwei Lin, Jen-Chang Yang | | Applied Sciences. 2021; 11(16): 7292 | | [Pubmed] | [DOI] | | 8 |
MTA apexification of an endodontically failed tooth with wide open apex in multiple visits |
|
| Rahul Paresh Ved, Vibha Hegde | | International Journal of Oral Care and Research. 2020; 8(3): 63 | | [Pubmed] | [DOI] | | 9 |
Outcomes of necrotic immature open-apex central incisors treated by MTA apexification using poly(e-caprolactone) fiber mesh as an apical barrier |
|
| Li-Wan Lee, Sheng-Huang Hsiao, Yun-Ho Lin, Po-Yu Chen, Ya-Ling Lee, Wei-Chiang Hung | | Journal of the Formosan Medical Association. 2019; 118(1): 362 | | [Pubmed] | [DOI] | | 10 |
Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview – part II: other clinical applications and complications |
|
| M. Torabinejad, M. Parirokh, P. M. H. Dummer | | International Endodontic Journal. 2018; 51(3): 284 | | [Pubmed] | [DOI] | |
|
|
 |
 |
|
|
|
|
|
|
Article Access Statistics | | Viewed | 10215 | | Printed | 198 | | Emailed | 1 | | PDF Downloaded | 708 | | Comments | [Add] | | Cited by others | 10 | |
|

|