Journal of Conservative Dentistry
Home About us Editorial Board Instructions Submission Subscribe Advertise Contact e-Alerts Login 
Users Online: 1209
Print this page  Email this page Bookmark this page Small font sizeDefault font sizeIncrease font size
Year : 2015  |  Volume : 18  |  Issue : 4  |  Page : 292-296

Microstructure of cryogenically treated martensitic shape memory nickel-titanium alloy

1 Department of Restorative Dental Sciences, College of Dentistry, Jazan Universtiy, Jazan, Kingdom of Saudi Arabia
2 Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India
3 Department of Mechanical Engineering, Velammal Engineering College, Chennai, Tamil Nadu, India
4 Department of Production Technology, MIT Campus, Anna University, Chennai, Tamil Nadu, India

Correspondence Address:
Dr. Thilla Sekar Vinothkumar
MDS, Assistant Professor, Department of Restorative Dental Sciences, College of Dentistry, Jazan Universtiy, Jazan
Kingdom of Saudi Arabia
Login to access the Email id

Source of Support: This project was partly supported by “Young Research Faculty Grant” provided by Faculty of Dentistry, Sri Ramachandra University, India., Conflict of Interest: None

DOI: 10.4103/0972-0707.159727

Rights and Permissions

Context: Recent introduction of shape memory (SM) nickel-titanium (NiTi) alloy into endodontics is a major breakthrough. Although the flexibility of these instruments was enhanced, fracture of rotary endodontic instruments during instrumentation is an important challenge for the operator. Implementation of supplementary manufacturing methods that would improve the fatigue life of the instrument is desirable. Aim: The purpose of this study was to investigate the role of dry cryogenic treatment (CT) conditions on the microstructure of martensitic SM NiTi alloy. Materials and Methods: Experiments were conducted on Ni-51 wt% Ti-49 wt% SM alloy. Five cylindrical specimens and five sheet specimens were subjected to different CT conditions: Deep CT (DCT) 24 group: −185°C; 24 h, DCT 6 group: −185°C; 6 h, shallow CT (SCT) 24 group: −80°C, 24 h, SCT 6 group: −80°C, 6 h and control group. Microstructure of surface was observed on cylindrical specimens with an optical microscope and scanning electron microscope at different magnifications. Subsurface structure was analyzed on sheet specimens using X-ray diffraction (XRD). Results: Microstructures of all SM NiTi specimens had equiaxed grains (approximately 25 μm) with well-defined boundaries and precipitates. XRD patterns of cryogenically treated specimens revealed accentuation of austenite and martensite peaks. The volume of martensite and its crystallite size was relatively more in DCT 24 specimen. Conclusions: DCT with 24 h soaking period increases the martensite content of the SM NiTi alloy without altering the grain size.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded170    
    Comments [Add]    
    Cited by others 3    

Recommend this journal