Journal of Conservative Dentistry
Home About us Editorial Board Instructions Submission Subscribe Advertise Contact e-Alerts Login 
Users Online: 2668
Print this page  Email this page Bookmark this page Small font sizeDefault font sizeIncrease font size
 

 
Table of Contents   
ORIGINAL ARTICLE  
Year : 2014  |  Volume : 17  |  Issue : 2  |  Page : 133-137
Comparative anti-microbial efficacy of Azadirachta indica irrigant with standard endodontic irrigants: A preliminary study


1 Department of Restorative Dentistry, Edinburgh Dental Institute, Lauriston Place, Edinburgh, EH3 8DA, Scotland, United Kingdom
2 Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences, Mangalore, Karnataka, India

Click here for correspondence address and email

Date of Submission30-Sep-2013
Date of Decision11-Dec-2013
Date of Acceptance07-Jan-2014
Date of Web Publication1-Mar-2014
 

   Abstract 

Objective: The anti-microbial efficacy of 2.5% sodium hypochlorite (SHC) and 0.2% chlorhexidine gluconate were compared with an experimental irrigant formulated from the Neem tree, Azadirachta indica A. Juss.
Materials and Methods: A sample of 36 single rooted anterior teeth with periapical radiolucency and absence of response to vitality tests that required root canal treatment were selected for this study. The test irrigants and their combinations were assigned to five different groups and saline served as the control. Access cavities were prepared using an aseptic technique and samples collected for both anaerobic culture and Gram stained smears, followed by irrigation and sample collection again. The number of organisms were expressed in colony forming units/ml after 72 h of incubation; the smears were analyzed for their microbial loads and tissue clearance and assessed as per defined criteria.
Results: Our results found the maximum reduction in microbial loads, when analyzed by culture method, with a combination of SHC and the experimental neem irrigant. Maximum tissue clearance on the Gram Stained smears was also found with the same combination.
Conclusion: Neem irrigant has anti-microbial efficacy and can be considered for endodontic use.

Keywords: Antimicrobial activity; Azadirachta indica; chlorhexidine gluconate; sodium hypochlorite

How to cite this article:
Dutta A, Kundabala M. Comparative anti-microbial efficacy of Azadirachta indica irrigant with standard endodontic irrigants: A preliminary study. J Conserv Dent 2014;17:133-7

How to cite this URL:
Dutta A, Kundabala M. Comparative anti-microbial efficacy of Azadirachta indica irrigant with standard endodontic irrigants: A preliminary study. J Conserv Dent [serial online] 2014 [cited 2023 Oct 3];17:133-7. Available from: https://www.jcd.org.in/text.asp?2014/17/2/133/128047

   Introduction Top


Root canal microflora is the foremost cause of periradicular pathosis. A complex root canal system anatomy makes elimination of micro-organisms difficult and irrigants are essential since canal instrumentation alone is unable to remove all tissue remnants and debris. The desirable properties of an irrigant thus include it's ability to flush loose debris, lubricate the dentinal walls, dissolve organic matter and possess antimicrobial properties.

Sodium hypochlorite (SHC) is the most commonly used endodontic irrigant with good antimicrobial efficacy [1] and tissue dissolution [2] but with concerns for vital peri-radicular tissues. [3] Chlorhexidine gluconate (CHX) is a broad spectrum anti-microbial bisbiguanide effective against bacteria and fungi. [4] It has lower toxicity than SHC [3] but lacks tissue dissolving property. [2]

The Neem (Azadirachta indica A. Juss) tree has been described for its value in traditional Indian medicinal texts. In recent years, the chemistry and structural diversity of over 135 compounds isolated from different parts of the neem tree has been documented. [5] The isoprenoid group of constituents of neem have anti-inflammatory, [6],[7] anti-bacterial, [8],[9] anti-fungal [10],[11],[12] and immunomodulatory properties. [13] Our in vitro research screened several neem-based products and found maximal anti-microbial properties with a leaf extract from the tree. [14] We thus aimed to evaluate the antimicrobial properties of this neem extract as an irrigant during root canal treatment and compared it with SHC and chlorhexidine irrigants. Combinations of the leaf extract with standard irrigants were also evaluated.


   Materials and Methods Top


An ethanolic leaf extract (ELE) of the neem tree, A. indica A. Juss, was prepared by the pharmaceutical college of our university. Fresh leaves were procured from the neem tree, washed and dried in a shaded area. The leaves were then powdered and extraction was carried out by maceration in rectified spirit.

Selection of cases

Following institutional research ethical approval and with informed patient consent, 36 single rooted anterior teeth requiring root canal treatment that did not respond to vitality tests (heat, cold and electric pulp testing) with a periapical radiolucency were selected for this study. None of the patients were on antibiotic treatment before or during sample collection.

These cases were randomly divided into six groups (allocation by lottery method) based upon the irrigant to be used, with six teeth in each group.

Group I - 2.5% SHC (prepared and obtained from the Hospital Pharmacy of the Medical College Hospital at our university)

Group II - 0.2% CHX (CMW, Bangalore Pharmaceuticals and Research Laboratory, Bangalore, India)

Group III - Use of the Neem Extract (ELE)

Group IV - Alternate use of 2.5% SHC and ELE

Group V - Alternate use of 0.2% CHX and ELE

Group VI - 0.9% saline (Parenteral Drugs India Pvt. Ltd., Mumbai, India) as control.

A volume of 3 mL of the irrigant was used in the root canal. If an irrigant combination was used, 1.5 mL of each ELE was followed by either 1.5 mL SHC or CHX.

The study was double-blinded with neither the patient nor the microbiologist being aware of the irrigant used.

Preparation of access cavity

The tooth surface was disinfected using Möller's technique. [15] After rubber dam isolation, the tooth, it's surroundings and the clamp were cleansed with 30% hydrogen peroxide for 1 min. An initial opening was made 1-2 mm into dentin with sterile tapering fissure diamond point at high speed with air-water coolant. The tooth was again swabbed with hydrogen peroxide for 10 s followed by application of 2% tincture of iodine for 1 min. The iodine was deactivated with sodium thiosulphate. After the penetration of the roof of the pulp chamber, a sterile surgical length no. 2 or no. 4 tungsten carbide round bur was used at slow speed, working the bur from the inside to expose the entire pulp chamber.

Method for collection of sample

Microbiological samples were obtained by a procedure outlined by Kuruvilla and Kamath, but with modifications. [16] Two sterile glass slides and two sterile cryo-vials (of 3 mL volume) containing Thioglycollate broth (TGB) were obtained from the Department of Microbiology (of the medical school at our university) for each case. The TGB (1.0 mL) was topped with a layer of sterile liquid paraffin (0.5 mL). The vial had a screw-on cap. A pre-operative long cone periapical radiograph was used to estimate the approximate length of the tooth. A sterile paper point (Dentsply Maillefer, CH 1338 Balluigues, Dentsply India Pvt. Ltd., India) pre-moistened with sterile distilled water (to provide a "pooling effect" of bacteria) was introduced into the root canal and the material smeared across a glass slide. Similarly, a sterile paper point and sterile barbed broach (Dentsply Maillefer, Dentsply India Pvt. Ltd, India) were inserted into the root canal to obtain the material and then placed in separate vials containing the TGB medium. This constituted the "pre-irrigant smear and culture".

The canal was then irrigated with 3 mL of the irrigant or an irrigant combination using a sterile syringe and 27 gauge needle that did not bind to the canal walls over a 3 min period. The canal was dried with a sterile paper point and samples were taken for smear preparation and culture in a manner identical to pre-irrigant smear and culture methods. This constituted the "post-irrigant smear and culture".

Laboratory processing for anaerobic culture

A semi-quantitative anaerobic technique was used to evaluate the microbial counts. Each sheep blood agar plate was divided into four quadrants. The samples were then streaked into these quadrants on separate plates (pre-irrigant and post-irrigant) using a calibration loop of 6 mm diameter that held 0.01 mL of TGB. The culture plates were incubated at 37°C in an anaerobic jar. After 72 h, the number of organisms were counted and expressed as the total colony forming units/mL (CFU/mL).

Criteria for data evaluation from anaerobic culture

The values obtained in this study were graded as follows:

  1. Low count: <10 3 CFU/mL
  2. Moderate count: 10 3 -5 × 10 4 CFU/mL
  3. Moderately high count: 5 × 10 4 -10 5 CFU/mL
  4. High Count: >10 5 CFU/mL.


Smear preparation with Gram's stain

The smears were Gram stained and observed with a light microscope under oil immersion field (OIF). From each sample, five insets with the highest colonies were seen and a mean score allotted for each sample and graded as per the following scale.

Criteria for evaluation of micro-organisms from Gram stained smears

  1. Scanty: <5 micro-organisms/OIF +
  2. Moderate: 6-30 micro-organisms/OIF ++
  3. Moderately High: 31-100 micro-organisms/OIF +++
  4. Abundant: >100 micro-organisms/OIF ++++.


It was also hypothesized that when greater amounts of organic material were present on the slide, the slide appeared darker in Gram's stain. Using this principle, tissue clearance was studied as an additional finding in this study.

Criteria for evaluation of tissue clearance from Gram stained smears

Four slides were standardized as follows:

  1. Complete clearance
  2. Lightly stained
  3. Moderately stained
  4. Darkly stained.


The "pre-irrigant" and "post-irrigant" stained smears were compared to the above standards and graded.

Statistical analysis of the data was perfomed using Statistical Package for Social Sciences (SPSS) version 12 (SPSS Inc, Chicago, USA). Evaluation of the percentage reduction in microbial counts within each group in either the anaerobic culture technique or the Gram stain method was analyzed with the Friedman test. Friedman test was also used to assess the percentage reduction in tissue load on Gram stained smears within each group. All inter group comparisons were subjected to the Mann Whitney U-test. Levels of significance were set at P < 0.05.


   Results Top


Our results indicate that the number of post-irrigant positive cultures (CFU/ml) were significantly lower than the pre-irrigant cultures in Groups 1-5 (P < 0.05). No significant reduction in colony counts was found between the pre-and post-irrigant cultures with saline. [Figure 1] represents the percentage reduction in micro-organisms with the different irrigants and combinations. No significant differences were found between SHC, CHX and ELE. There were no statistically significant differences between SHC and SHC + ELE or SHC + CHX combinations. Even though CHX did not differ from the ELE + CHX combination (P = 0.473), we found it to differ significantly from a combination of ELE + SHC (P = 0.049). Similarly, ELE did not differ significantly with ELE + CHX combination (P = 0.265), but had a significant difference with the combination of ELE + SHC (P = 0.022). All irrigants and combinations differed significantly from saline.
Figure 1: Comparison of percentage reduction of organisms in anaerobic culture (Group I - Sodium hypochlorite. Group II - Chlorhexidene gluconate. Group III - Ethanolic neem leaf extract. Group IV - Combination of sodium hypochlorite and ethanolic leaf extract. Group V - Combination of chlorhexidene and ethanolic leaf extract. Group VI - Saline)

Click here to view


The results from microbial counts on Gram-stained smears [Figure 2] indicate that the number of micro-organisms on the post-irrigant smears were significantly lower in all the groups. A statistically significant difference was found between saline and SHC (P = 0.009); a combination of SHC and ELE with saline (P = 0.017); and a combination of CHX and ELE with saline (P = 0.008). Comparisons between all other groups did not yield any difference.
Figure 2: Comparison of percentage reduction of organisms in Gram-stained smears (Group I - Sodium hypochlorite. Group II - Chlorhexidene gluconate. Group III - Ethanolic Neem leaf extract. Group IV - Combination of sodium hypochlorite and ethanolic leaf extract. Group V - Combination of chlorhexidene and ethanolic leaf extract. Group VI - Saline)

Click here to view


The results from Gram-stained smears [Figure 3] indicate that tissue loads on the post-irrigant smears were significantly lower in all the groups. SHC + ELE differed significantly from saline (P = 0.026). Comparisons between other groups did not yield differences.
Figure 3: Comparison of percentage reduction of tissue load in Gram-stained smears (Group I - Sodium hypochlorite. Group II - Chlorhexidene gluconate. Group III - Ethanolic Neem leaf extract. Group IV - Combination of sodium hypochlorite and ethanolic leaf extract. Group V - Combination of chlorhexidene and ethanolic leaf extract. Group VI - Saline)

Click here to view



   Discussion Top


A. indica A. Juss is a useful traditional medicinal plant in India. Each part of the tree has some medicinal property. It is now considered a valuable source of unique natural products for development of medicines against various diseases. [17]

Past research has shown ELE of the neem tree to be effective against several microbes. [18] It's use within the root canal has been undocumented. The antimicrobial property of ELE against a mixed flora of anaerobic and facultative micro-organisms was tested in this study. ELE has low toxic potential and safety tolerance limits have been established at 176 mg/kg body weight. [19] 3 mL of the ELE irrigant was used in this study, which was within the safety criteria.

The use of Gram staining to evaluate bacteria within root canals has been described. [20] The technique has been used to assess the antimicrobial effect of irrigants within root canals and tissue clearance based upon staining characteristics of the smear. [16] A similar approach has been used in the present study.

The leaf extract has several bioactive compounds that possess antibacterial capabilities. This may be attributed to the tetranortriterpenes that include, nimbin, nimbinin, nimbidinin, nimbolide and nimbidic acid. [5] The antibacterial action of the drug has been studied by Baswa et al. who found inhibition of cell membrane synthesis. [21] Besides the antimicrobial action, this group of compounds also demonstrates anti-inflammatory function (ability to prevent the production of prostaglandins, especially Prostaglandin E1 (PGEI) and 5-hydroxytryptamine) which is a desirable characteristic of the irrigant. [22] An immunomodulatory function has also been suggested for the neem drug that enables antigen presentation to immunocompetent cells.­ [13] This study is the first to use a leaf extract within the root canal.

The irrigant combinations (ELE + SHC and ELE + CHX) had better antimicrobial properties than individual irrigants. This is indicative of synergistic action between the herbal and chemical irrigants, which potentiates their individual anti-microbial efficacy. It could be hypothesized that using the SHC + ELE combination as irrigants would prove beneficial.

Biofilms present within the root canal are hard to eliminate with current irrigants and techniques. They exhibit an increased resistance to all disinfectants. [23] A. indica has demonstrable antifungal action against Candida albicans biofilm on tooth substrate. [24] A neem-based irrigant has also shown prevention of Enterococcus faecalis adhesion to dentin. [25] The effect of an aqueous neem leaf extract on extracellular glucan produced by Streptococcus sanguis, which is responsible for co-aggregation of microorganisms to form colonies, has been demonstrated. [26] The gallotannin component of the extract had an inhibitory effect on insoluble glucan production and bacterial aggregation. Such results have also been reported by Wu-Yuan et al. [27] We can hypothesize similar action with ELE in our study. The extract may have disrupted the biofilm adhering to the root canal walls and aided in the permeation of SHC to produce it's antibacterial action. This may explain the synergism between the two irrigants.

ELE has anti-microbial properties attributable to the neem drug component. Ethanol is the solvent for the neem drug in ELE. Our in vitro study demonstrated that ethanol itself lacked antimicrobial properties. [14] It has been used to reduce the surface tension of SHC which helps increase spreading ability. [28] However, such mixtures are unstable and lack shelf-life due to the loss of available chlorine from SHC. In our study, ethanol was an integral part of the leaf extract and could have increased the spreading ability of the neem drug within the canal. When mixed with SHC within the root canal (SHC + ELE sequential irrigation), ethanol helped reduce the surface tension of SHC. This could further explain synergism between SHC and ELE.

The anti-microbial effect of the standard irrigants, SHC and CHX showed no difference even though the percentage reduction with SHC was higher (84.85%) than CHX (69.17%). Similar results have been previously reported, [16] though other studies have found differing results. [1]

Gram-stained smears were used for the detection of root canal flora. Significant differences were found between SHC and saline as well as combinations (SHC + ELE, CHX + ELE) and saline. The smears did not find a significant reduction in microbial counts between either ELE and saline or CHX and saline. This data does not co-relate with the anaerobic culture phase of the study. A possible explanation for this difference in results between the two methodologies could be the incomplete transfer of micro-organisms from the paper points onto the slides for gram smears. For anaerobic culture, the barbed broach and paper points were fully immersed within the TGB without attrition in the number of organisms.

The tissue clearing ability of the irrigant was additionally evaluated by the staining characteristics of the Gram smears. A statistically significant difference was found only between SHC + ELE and saline. This method did not suggest of any difference in reduction in tissue load between SHC and saline. SHC has established tissue dissolving properties. [2] This suggests Gram smears are not reliable indicators of tissue clearance within the canal as it is dependent on the amount of tissue that adheres to the paper point.


   Conclusions Top


Our study indicates that the ethanolic neem leaf extract can be used successfully within the root canal as an irrigant with demonstrable anti-microbial efficacy. SHC is important for good antimicrobial efficacy and tissue dissolution properties. A combination of SHC and ELE is synergistic antimicrobially. Further clinical research using this combination can aim at evaluating peri-radicular healing.

 
   References Top

1.Siqueira JF Jr, Batista MM, Fraga RC, de Uzeda M. Antibacterial effects of endodontic irrigants on black-pigmented gram-negative anaerobes and facultative bacteria. J Endod 1998;24:414-6.  Back to cited text no. 1
    
2.Naenni N, Thoma K, Zehnder M. Soft tissue dissolution capacity of currently used and potential endodontic irrigants. J Endod 2004;30:785-7.  Back to cited text no. 2
    
3.Tanomaru Filho M, Leonardo MR, Silva LA, Aníbal FF, Faccioli LH. Inflammatory response to different endodontic irrigating solutions. Int Endod J 2002;35:735-9.  Back to cited text no. 3
    
4.Ballal N, Kundabala M, Bhat K, Acharya S, Ballal M, Kumar R, et al. Susceptibility of Candida albicans and Enterococcus faecalis to Chitosan, Chlorhexidine gluconate and their combination in vitro. Aust Endod J 2009;35:29-33.  Back to cited text no. 4
    
5.Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 2002;82:1337-45.  Back to cited text no. 5
    
6.Jain A, Basal E. Inhibition of Propionibacterium acnes-induced mediators of inflammation by Indian herbs. Phytomedicine 2003;10:34-8.  Back to cited text no. 6
    
7.Okpanyi SN, Ezeukwu GC. Anti-inflammatory and antipyretic activities of Azadirachta indica. Planta Med 1981;41:34-9.  Back to cited text no. 7
[PUBMED]    
8.Pai MR, Acharya LD, Udupa N. Evaluation of antiplaque activity of Azadirachta indica leaf extract gel - A 6-week clinical study. J Ethnopharmacol 2004;90:99-103.  Back to cited text no. 8
    
9.Fabry W, Okemo PO, Ansorg R. Antibacterial activity of East African medicinal plants. J Ethnopharmacol 1998;60:79-84.  Back to cited text no. 9
    
10.Natarajan V, Pushkala S, Karuppiah VP, Prasad PV. Anti dermatophytic activity of Azardirachta indica (neem) by invitro study. Indian J Pathol Microbiol 2002;45:311-3.  Back to cited text no. 10
[PUBMED]  Medknow Journal  
11.Fabry W, Okemo P, Ansorg R. Fungistatic and fungicidal activity of east African medicinal plants. Mycoses 1996;39:67-70.  Back to cited text no. 11
    
12.Nwosu MO, Okafor JI. Preliminary studies of the antifungal activities of some medicinal plants against Basidiobolus and some other pathogenic fungi. Mycoses 1995;38:191-5.  Back to cited text no. 12
    
13.Upadhyay SN, Dhawan S, Garg S, Talwar GP. Immunomodulatory effects of neem (Azadirachta indica) oil. Int J Immunopharmacol 1992;14:1187-93.  Back to cited text no. 13
    
14.Dutta A, Kundabala M. Antimicrobial efficacy of endodontic irrigants from Azadirachta indica: An in vitro study. Acta Odontol Scand 2013;71:1594-8.  Back to cited text no. 14
    
15.Möller AJ. Microbiological examination of root canals and periapical tissues of human teeth. Methodological studies. Odontol Tidskr 1966; 74:Suppl:1-380.  Back to cited text no. 15
    
16.Kuruvilla JR, Kamath MP. Antimicrobial activity of 2.5% sodium hypochlorite and 0.2% chlorhexidine gluconate separately and combined, as endodontic irrigants. J Endod 1998;24:472-6.  Back to cited text no. 16
    
17.van der Nat JM, van der Sluis WG, de Silva KT, Labadie RP. Ethnopharmacognostical survey of Azadirachta indica A. Juss (Meliaceae). J Ethnopharmacol 1991;35:1-24.  Back to cited text no. 17
    
18.Vanka A, Tandon S, Rao SR, Udupa N, Ramkumar P. The effect of indigenous neem Azadirachta indica [correction of (Adirachta indica)] mouth wash on Streptococcus mutans and lactobacilli growth. Indian J Dent Res 2001;12:133-44.  Back to cited text no. 18
[PUBMED]    
19.Tandan S, Chandra S, Gupta S, Tripathi H, Lal J. Pharmacological effects of Azadirachta indica leaves. Fitoterapia 1990;LXI:75-8.  Back to cited text no. 19
    
20.Pajari U, Ahola R, Bäckman T, Hietala EL, Tjäderhane L, Larmas M. Evaluation of Gram's method of staining for the prognosis of root canal treatment in nonvital dental pulps. Oral Surg Oral Med Oral Pathol 1993;76:91-6.  Back to cited text no. 20
    
21.Baswa M, Rath CC, Dash SK, Mishra RK. Antibacterial activity of Karanj (Pongamia pinnata) and Neem (Azadirachta indica) seed oil: A preliminary report. Microbios 2001;105:183-9.  Back to cited text no. 21
    
22.Chattopadhyay R, Chattopadhyay R, Mitra S. Possible mechanism of anti-inflammatory activity of a indica leaf extract. Indian J Pharmacol 1993;25:99-100.  Back to cited text no. 22
  Medknow Journal  
23.Luddin N, Ahmed HM. The antibacterial activity of sodium hypochlorite and chlorhexidine against Enterococcus faecalis: A review on agar diffusion and direct contact methods. J Conserv Dent 2013;16:9-16.  Back to cited text no. 23
[PUBMED]  Medknow Journal  
24.Tyagi SP, Sinha DJ, Garg P, Singh UP, Mishra CC, Nagpal R. Comparison of antimicrobial efficacy of propolis, Morinda citrifolia, Azadirachta indica (Neem) and 5% sodium hypochlorite on Candida albicans biofilm formed on tooth substrate: An in-vitro study. J Conserv Dent 2013;16:532-5.  Back to cited text no. 24
[PUBMED]  Medknow Journal  
25.Rosaline H, Kandaswamy D, Gogulnath D, Rubin M. Influence of various herbal irrigants as a final rinse on the adherence of Enterococcus faecalis by fluorescence confocal laser scanning microscope. J Conserv Dent 2013;16:352-5.  Back to cited text no. 25
[PUBMED]  Medknow Journal  
26.Wolinsky LE, Mania S, Nachnani S, Ling S. The inhibiting effect of aqueous Azadirachta indica (Neem) extract upon bacterial properties influencing in vitro plaque formation. J Dent Res 1996;75:816-22.  Back to cited text no. 26
    
27.Wu-Yuan CD, Chen CY, Wu RT. Gallotannins inhibit growth, water-insoluble glucan synthesis, and aggregation of mutans streptococci. J Dent Res 1988;67:51-5.  Back to cited text no. 27
    
28.Cunningham WT, Cole JS 3 rd , Balekjian AY. Effect of alcohol on the spreading ability of sodium hypochlorite endodontic irrigant. Oral Surg Oral Med Oral Pathol 1982;54:333-5.  Back to cited text no. 28
    

Top
Correspondence Address:
Arindam Dutta
Department of Restorative Dentistry, Edinburgh Dental Institute, Lauriston Building, Lauriston Place, Edinburgh, EH3 8DA, Scotland, United Kingdom

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-0707.128047

Rights and Permissions


    Figures

  [Figure 1], [Figure 2], [Figure 3]

This article has been cited by
1 Can natural irrigants replace sodium hypochlorite? A systematic review
Anand Venkatraman Susila, Shamini Sai, Nikita Sharma, Arthi Balasubramaniam, Aruna Kumari Veronica, Sureshbabu Nivedhitha
Clinical Oral Investigations. 2023;
[Pubmed] | [DOI]
2 A Comparative Evaluation of Antibacterial Efficacy of Moringa oleifera Leaf Extract, Octenidine Dihydrochloride, and Sodium Hypochlorite as Intracanal Irrigants against Enterococcus faecalis: An In Vitro Study
Afrah M. Alharbi, Tahani M. Alharbi, Mashael S. Alqahtani, Fathy M. Elfasakhany, Ibtesam K. Afifi, Mona T. Rajeh, Mohamed Fattouh, Laila Mohamed Mohamed Kenawi, Lucas da Fonseca Roberti Garcia
International Journal of Dentistry. 2023; 2023: 1
[Pubmed] | [DOI]
3 Usage of naturally available herbal-based products in endodontics: ‘Naturodontics’: A research-based survey of the literature
Anjali Oak, Kailash Attur, Kamal Bagda, Aditi Soni
Advances in Human Biology. 2023; 13(5): 52
[Pubmed] | [DOI]
4 Effect of herbal and chemical solution in tissue dissolution by using conventional irrigation and sonic irrigation system
BhavikaA Bhavsar, Thanigai Selvi, Aparna Paliwal, Farha Ansari, DeepaliShrivastava Beohar, Teena Joseph
Journal of Pharmacy And Bioallied Sciences. 2022; 14(5): 863
[Pubmed] | [DOI]
5 Antimicrobial Efficacy of Endodontic Irrigants after Reciprocating System of Instrumentation in Infected Root Canals with Complex Curvature of Mandibular Molars: An Ex Vivo Study
Elizabeth Moirangthem, Kiran Kumar Aheibam, Sagolsem Chandarani, Albert Ashem, Deepak Ningombam Singh, Khwairakpam Chaoton Singh
World Journal of Dentistry. 2022; 13(S2): S129
[Pubmed] | [DOI]
6 Dose-dependent effects of neem crude extract on human dental pulp cell and murine osteoblast viability and mineralization
Somying Patntirapong, Visakha Aupaphong, Patcharin Pipatboonyarit, Kasira Kritsuttsikun, Thanyaporn Phubai
Brazilian Dental Journal. 2022; 33(6): 56
[Pubmed] | [DOI]
7 Herbal Medications in Endodontics and Its Application—A Review of Literature
Mohmed Isaqali Karobari, Abdul Habeeb Adil, Ali A. Assiry, Syed Nahid Basheer, Tahir Yusuf Noorani, Ajinkya M. Pawar, Anand Marya, Pietro Messina, Giuseppe Alessandro Scardina
Materials. 2022; 15(9): 3111
[Pubmed] | [DOI]
8 Novel neem leaves extract mouthwash therapy for oral lichen planus
Ashita R. Kalaskar, Rahul R. Bhowate, Ritesh R. Kalaskar, Sumeet Ghonmode
Journal of Herbal Medicine. 2021; 26: 100408
[Pubmed] | [DOI]
9 Topical application of Azadirachta indica improves epidermal wound healing in hyperglycemic rats
Ana C. C. Silva, Aline N. Eugênio, Samara S. Mariano, Sofia Poletti, Fernanda G. Gaspi, João V. S. Bittencourt, Laura R. Casagrande, Paulo C. L. Silveira, Marcelo A. M. Esquisatto, Andrea A. Aro, Thiago A. M. Andrade, Gláucia M. T. Santos
Comparative Clinical Pathology. 2021; 30(3): 461
[Pubmed] | [DOI]
10 Evaluation of Antimicrobial Activity of Different Herbal Products against Bacillus subtilis, Staphylococcus aureus, and Enterococcus faecalis Using Agar Diffusion Test: An In Vitro Study
Rajinder Bansal, Manu Bansal, Nikhil Dev Wazir, Mandeep Singh Matta, Sanjeev Jain, Jaspreet Kaur
Dental Journal of Advance Studies. 2020; 8(03): 109
[Pubmed] | [DOI]
11 Azadirachta indica A. juss, Morinda citrifolia L. and Triphala as herbal endodontic irrigants: A scoping review
Archna Agnihotri, Swaty Jhamb, Urvashi Shrama, Sumidha Rohtagi
AYU (An international quarterly journal of research in Ayurveda). 2020; 41(3): 148
[Pubmed] | [DOI]
12 Antibacterial Efficacy of Neem, Triphala, Green Tea, and Combination of Neem with Triphala Extract against Enterococcus faecalis: An in vitro Study
Neha Saini, Abhinav C Singhal, Aditi S Jain, Jayesh Tiwari, Pratik Surana
International Journal of Experimental Dental Science. 2017; 6(2): 65
[Pubmed] | [DOI]
13 Antimicrobial Efficacy of Various Concentrations of Bamboo Salt against Enterococcus faecalis and Candida albicans: An in vitro Study
P Santosh Kumar, S Vidhya, S Mahalaxmi
Journal of Operative Dentistry & Endodontics. 2017; 2(2): 65
[Pubmed] | [DOI]
14 Antibacterial Efficacy of Neem (Azadirachta indica) Extract against Enterococcus faecalis: An in vitro Study
Mohammed Mustafa
The Journal of Contemporary Dental Practice. 2016; 17(10): 791
[Pubmed] | [DOI]



 

Top
 
 
 
  Search
 
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  
 


    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusions
    References
    Article Figures

 Article Access Statistics
    Viewed4661    
    Printed125    
    Emailed0    
    PDF Downloaded398    
    Comments [Add]    
    Cited by others 14    

Recommend this journal