Journal of Conservative Dentistry
Home About us Editorial Board Instructions Submission Subscribe Advertise Contact e-Alerts Login 
Users Online: 168
Print this page  Email this page Bookmark this page Small font sizeDefault font sizeIncrease font size

Table of Contents   
Year : 2011  |  Volume : 14  |  Issue : 4  |  Page : 387-390
Different surface preparation techniques of porcelain repaired with composite resin and fracture resistance

School of Dental Sciences, Universiti Sains Malaysia Kubang Kerian, Kelantan, Malaysia

Click here for correspondence address and email

Date of Submission28-Sep-2010
Date of Decision02-May-2011
Date of Acceptance09-Jun-2011
Date of Web Publication5-Nov-2011


Background : Porcelain from prosthesis such as crown or bridge can be fractured if exposed to trauma; and, can be repaired at chairside using composite resin.
Aim : To investigate the fracture resistance of few techniques of surface preparation in repairing fractured porcelain using composite resin.
Materials and Methods : Eighty samples of porcelain blocks were divided into 4 groups for different surface preparations, such as, Cimara repairing kit; porcelain etch kit containing hydrofluoric acid; Panavia F resin cement; and, sandblasting using aluminium oxide, before composite resin (Filtek Z250, 3M ESPE) was bonded to the prepared porcelain blocks. Twenty others samples in the control group comprised of pure porcelain blocks. The fracture resistance of each sample was tested using Instron machine (UK).
Results : With the exception of the group repaired using hydrofluoric acid (3.04±1.04 Mpa), all the other groups showed significant difference in the fracture resistance values when compared to the control group (3.05 ± 1.42 MPa) at P<0.05.
Conclusions : Etching of the porcelain blocks with hydrofluoric acid holds promise in the repair of fractured porcelain with composite resin at chairside.

Keywords: Composite resin; fracture resistance; porcelain repaired; surface preparation

How to cite this article:
Abd Wahab MK, Bakar WW, Husein A. Different surface preparation techniques of porcelain repaired with composite resin and fracture resistance. J Conserv Dent 2011;14:387-90

How to cite this URL:
Abd Wahab MK, Bakar WW, Husein A. Different surface preparation techniques of porcelain repaired with composite resin and fracture resistance. J Conserv Dent [serial online] 2011 [cited 2021 Jul 29];14:387-90. Available from:

   Introduction Top

Dental porcelain is one of the most popular materials used in fixed prosthodontics. This is due to its excellent aesthetic value, biocompatibility and stability. [1] However, failure of porcelain is of multifactorial causes, and could occur externally under certain conditions such as trauma, motor vehicle accident (MVA), etc. [2] Fractured porcelains will affect aesthetics and function of the prostheses, which may warrant patients to seek immediate treatment. Removal and reconstruction of the prostheses is a costly affair; [3] and it is therefore worthy to attempt repair with composite resins intraorally, especially in less severe cases. The use of 8% hydrofluoric acid etching and silane coupling agent for the repair of the fractured porcelain with composite resin has been recommended. [4],[5] Although a few other techniques are commercially available, some of the materials are difficult to be acquired in certain countries and their effectiveness is also controversial.

Hence, this study was carried out with the aim of finding an effective technique for repairing fractured porcelain at chairside by using the materials that are commercially available in Malaysia.

   Materials and Methods Top

This was an experimental laboratory study carried out using dental porcelain (IPS Design, Liechtenstein) and composite resin (CR) (Filtek Z250, 3M ESPE). Twenty porcelain samples (12 mm length x 5 mm width x 2 mm thickness) for control group, and 80 porcelain samples (6 mm length x 5 mm width x 2 mm thickness) for tested groups were molded in silicon and fired in the porcelain furnace (Progra mmat® P100, Ivoclar-Vivadent). Polishing was carried out by using ceramic polishing bur. Later, the 80 samples were randomly divided into following groups according to different surface treatment techniques used for the porcelain blocks, as below:-

Group 1

Using Cimara repairing kit (Voco, Germany) which involved roughening of the porcelain surface with Cimara grinder, application of silane coupling agent, drying for 2 minutes, applying Scotchbond bonding agent (3M ESPE) and Filtek Z250 incrementally with light-curing of 40 seconds.

Group 2

Using hydrofluoric acid porcelain etch kit (Ultradent, USA), which involved roughening of the surface with high speed diamond bur, etching with porcelain etch for 2.5 minutes, washing, silanating and bonding with CR.

Group 3

Using Panavia F resin cement (Kuraray Dental, USA) which involved etching of the porcelain surface with the K etchant gel for 10 seconds, and then washing, silanating, and application of enamel/dentine primer (ED Primer) and CR, which was bonded with Panavia F paste followed by light-curing for 20 seconds.

Group 4

Sandblasted using aluminium oxide particles type Cobra; grain size: 90 ΅m; grit percentage: 99.6% (Dental Technology, Germany) for 1 minute before similar bonding to the CR.

Group 5

The control group (pure porcelain).

For Groups 1-4, after their respective surface treatment, they were bonded with composite resin following each manufacturer's instructions, and kept in wet tissue paper in a dry-closed container at room temperature. The fracture resistance of each sample was tested using Instron Machine 8874 (Instron Corp., UK). The fracture resistance of samples was calculated using the formula:

where, r = flexural strength (MPa)

P = maximum load (N)

L = displacement at maximum load (mm)

b = width of samples (mm)

d = thickness of samples (mm)

The statistical analyses were done using numerical data analysis of Independent t-Test (Statistical Package for the Social Sciences, SPSS version 13.0.1) and One-way Analysis of Variance (Anova) to compare differences among mean score values of fracture resistance for each group. P value < 0.05 was considered statistically significant.

   Results Top

The results showed that the fracture resistance between the five groups was statistically significant (P<0.05). The control group had the highest fracture resistance (3.05 ± 1.41), followed by Group 2 (3.04 ± 1.04), Group 3 (1.85 MPa ± 0.81), Group 1 (1.64 MPa ± 0.96) and Group 4 (0.66 MPa ± 0.49). The results are tabulated in [Table 1]. One-way Anova test used to compare significant differences between the groups showed that with the exception of group 2, all the other groups 1, 3 and 4 showed significant difference in the fracture resistance values when compared to the control group. The results are presented in [Table 2].
Table 1: Comparing the fracture resistance mean values between each groups of the study

Click here to view
Table 2: Comparing the significant differences between the tested groups with the control group in the study using one way analysis of variance (ANOVA)

Click here to view

   Discussion Top

Fractured porcelain could be repaired clinically with composite resin using few techniques. Factors such as the effectiveness of bonding between porcelain surface and composite resin, which create maximum strength for porcelain-composite bonding, should be considered. [6] Rather than reconstructing the broken prosthesis which will involve longer time and higher cost, the repairing technique will benefit both the patient and the dentist. [3]

The porcelain and the Filtek Z250 were employed in the current study due to their routine use in School of Dental Sciences, Universiti Sains Malaysia. Cimara repairing kit was chosen as one of the materials in this experiment due to its ability to create permanent bond between porcelain and composite resin with adequate high bond strength value as claimed by the manufacturer. Panavia F is a resin cement used to bond several materials such as prostheses (crowns and bridges) or amalgam. The system is a self-etching, self-adhesive, dual-cure and contains 2 photoinitiators, providing a wider curing bandwidth to be used with any curing lights. It is also radiopaque and is claimed to be fluoride releasing. [7] Hydrofluoric acid etching and silanated techniques are among common repair techniques used worldwide nowadays. [5],[8] The bond strength of hydrofluoric acid etching has been shown to have clinically good values and the use of 3-methacryloyl oxypropyl trimethoxy as a silane coupling agent works together with it to increase the bond strength of the composite-to-porcelain surface. [5] Sandblasting with aluminium particles is also among the famous techniques that have been suggested for surface treatment of porcelain before being silanated. [9] Aluminium oxide particles act as sharp, long lasting abrasive sandblasting cutting media, and can be re-used many times for grit blasting. The particles are harder than most other commonly used dry abrasive blast media, and come in a wide range of sizes. All these descriptions are detailed as claimed by the manufacturer.

The porcelain used in prosthesis should be of 1-2 mm thickness, as a thickness beyond this range can cause porcelain to break down. [1],[3] Fracture resistance of porcelain and porcelain-composite samples could be evaluated with various techniques, for example, with the mechanical testing machine. [5] In this study, Instron Machine 8874 (Instron Corp, UK) was used for measuring the flexural strength. The comparison of fracture resistance was found to be statistically significant between the groups. Porcelain treated with hydrofluoric acid etching gel has the greatest fracture resistance value similar to the results observed by previous studies. It was reported that hydrofluoric acid etching action coupled with silane coupling agents strengthen the porcelain-composite bonding by producing great micromechanical retention. [5],[10] This is due to the effective generation of microcracks in the porcelain molecules that can be filled with composite materials, which could create good micromechanical retention for the porcelain-composite bond. [11] Silane agents appear to be the essential components for a porcelain repair procedure and act by modifying its surface structure, thus rendering it more reactive to composite, and enabling chemical adhesion between the porcelain and composite surfaces. [12]

Silane coupling agents are organosilicone compounds having two functional groups with different reactivity. One of the two functional groups reacts with organic materials, and the other reacts with inorganic materials. Silane most commonly used in dentistry is the monofunctional gamma-methacryloxypropyltrimethoxysilane (or 3-trimethoxysilylpropyl methacrylate [MPS]), which is used to optimize and promote the adhesion through chemical and physical coupling between metal-composite, ceramic-composite, and composite-composite. Further, silane modifies the substrate surface oxide layer and forms a conversion layer. [13] This is all the more strengthened with bonding agents applied onto porcelain surface prior to composite restoration. [14] Groups 1, 3 and 4 depend on bonding by the chemical mechanisms of their respective reagents. As such they do not depend on micromechanical retention, which is why they have lower bond strengths compared to etching with hydrofluoric acid. However, studies have shown the potential dangers of hydrofluoric on biological tissues. [15],[16] Proper precautions, including application of rubber dam and use of gel etchant will help prevent tissue damage.

   Conclusions Top

From this study, it can be concluded that the bond between porcelain and composites' requires adequate micromechanical retention to achieve high strength, and to be stable over a prolonged period of time. Thus, hydrofluoric acid etching gel could be a material of choice in repairing fractured porcelain.

   Acknowledgments Top

We would like to express our gratitude to Dr Huwaina, En. Marzuki (technologist of Craniofacial Laboratory USM), En. Abdullah Hamat and En. Saiful Abdullah (technologist of Ceramic Laboratory USM) and Keng Yew Dental Suppliers. This study is supported by the Grant: USM ST 304/PPSG/6139045.

   References Top

1.Noort RV. Introduction to dental materials, 3 rd ed. St Louis: Mosby Elsevier; 2007.  Back to cited text no. 1
2.Yesil ZD, Karaoglanoglu S, Akyil MS, Seven N. Evaluation of the bond strength of different composite resin to porcelain and metal alloy. Int J Adhesion Adhesives 2007;27:258-62.  Back to cited text no. 2
3.Oh WS, Shen C. Effect of surface topography on the bond strength of a composite to three different types of ceramics. J Prosth Dent 2003;90:241-6.  Back to cited text no. 3
4.Ozcan M, Niedermelar W. Clinical study on the reasons for and location of failures of metal-ceramic restorations and survival of repairs. Int J Prosthodont 2002;15:299-302.  Back to cited text no. 4
5.Akova T, Aytutuldu T, Yoldas O. The evaluation of different surface treatment methods for porcelain-composite bonding. Int J Prosthodont 2007;27:20-5.  Back to cited text no. 5
6.Kato H, Matsumura H, Atsuta M. Effect of etching and sandblasting on bond strength to sintered porcelain of unfilled resin. J Oral Rehabil 2000;27:103-110.  Back to cited text no. 6
7.Bona AD, Anusarile KJ, Shen C. Microtensile strength of composite bonded to hot-pressed ceramics. J Adhes Dent 2000;2:305-15.  Back to cited text no. 7
8.Canay S, Hersek N, Ertan A. Effect of different acid treatment on porcelain surface. J Oral Rehabil 2001:28:95-101.  Back to cited text no. 8
9.Fleming GJ, Jender HS, Nolan L, Shaini FJ. The influence of alumina abrasion and cement lute on the strength of a porcelain laminate veneering material. J Dent 2004;32:67-74.  Back to cited text no. 9
10.Ozcan M, Valandro LF, Amoral R, Leiti F, Bottino MA. Bond strength durability of a resin composite on a reinforced ceramic using various repair system. Dent Mater 2009;25:1477-83.  Back to cited text no. 10
11.Ozcan M, Vallitu PK. Effect of surface conditioning methods on the bond strength of luting cements to ceramics. Dent Mater 2003;19:725-31.  Back to cited text no. 11
12.Addison O, Marquis PM, Fleming GJ. Resin strengthening of dental ceramics - the impact of surface texture and silane. J Dent 2007;35:416-24.  Back to cited text no. 12
13.Jukka PM, Lippo VJ, Mutlu O, Antti YU, Pekka KV. An introduction to silanes and their clinical application in dentistry. Int J Prosthodont 2004;17:155-64.  Back to cited text no. 13
14.Yamada K, Onizuka T, Swain MV. The effect of gold binder on the adhesion between porcelain and pure titanium. J Oral Rehabil 2004;31:775-84.  Back to cited text no. 14
15.Palao R, Monge I, Ruiz M, Barret JP. Chemical burns: Pathophysiology and treatment burns. 2010;36:295-304.  Back to cited text no. 15
16.Robinnet DA, Shelton B, Dyer KS. Special consideration in hazardous materials burns. J Em Med 2010;39:544-53.  Back to cited text no. 16

Correspondence Address:
Wan Zaripah Wan Bakar
School of Dental Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan
Login to access the Email id

Source of Support: The Grant: USM ST 304/PPSG/6139045, Conflict of Interest: None

DOI: 10.4103/0972-0707.87207

Rights and Permissions


  [Table 1], [Table 2]

This article has been cited by
1 Effect of four different surface treatments on shear bond strength of three porcelain repair systems: An in vitro study
Gourav, R. and Ariga, P. and Jain, A. and Philip, J.
Journal of Conservative Dentistry. 2013; 16(3): 208-212


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  

    Materials and Me...
    Article Tables

 Article Access Statistics
    PDF Downloaded128    
    Comments [Add]    
    Cited by others 1    

Recommend this journal