Journal of Conservative Dentistry
Home About us Editorial Board Instructions Submission Subscribe Advertise Contact e-Alerts Login 
Users Online: 2092
Print this page  Email this page Bookmark this page Small font sizeDefault font sizeIncrease font size
 

 
CASE REPORT Table of Contents   
Year : 2010  |  Volume : 13  |  Issue : 2  |  Page : 110-113
Management of recently traumatized maxillary central incisors by partial pulpotomy using MTA: Case reports with two-year follow-up


1 Department of Conservative Dentistry and Endodontics, Meenakshiammal Dental College and Hospitals, Chennai, India
2 Department of Conservative Dentistry and Endodontics, Ramachandra Dental College and Hospitals, Chennai, India

Click here for correspondence address and email

Date of Submission22-Oct-2009
Date of Decision06-Dec-2009
Date of Acceptance18-Mar-2010
Date of Web Publication23-Jul-2010
 

   Abstract 

In traumatized, young, permanent teeth, pulpotomy is classically undertaken to promote apexogenesis. The objective is to promote root development and apical closure. Once root end development and apical closure is achieved, the root canal treatment is completed. However, it has been suggested that mere pulp exposure does not cause pulpitis in the absence of bacteria. Recent studies have proposed that as long as a good seal is ensured, root canal treatment may not be necessary following pulpotomy.In this article we report two cases of traumatized, fully matured, maxillary permanent central incisors, which have been treated with mineral trioxide aggregate following partial pulpotomy, with a two-year follow-up.

Keywords: Partial pulpotomy, mineral trioxide aggregate, vital pulp therapy

How to cite this article:
Abarajithan M, Velmurugan N, Kandaswamy D. Management of recently traumatized maxillary central incisors by partial pulpotomy using MTA: Case reports with two-year follow-up. J Conserv Dent 2010;13:110-3

How to cite this URL:
Abarajithan M, Velmurugan N, Kandaswamy D. Management of recently traumatized maxillary central incisors by partial pulpotomy using MTA: Case reports with two-year follow-up. J Conserv Dent [serial online] 2010 [cited 2023 Sep 23];13:110-3. Available from: https://www.jcd.org.in/text.asp?2010/13/2/110/66724

   Introduction Top


Preservation of pulp vitality is of paramount importance because, a vital functioning pulp is capable of initiating several defense mechanisms to protect the body from bacterial invasion; it is beneficial to preserve the vitality and health of an exposed pulp rather than to replace it with a root filling material following pulp exposure. [1] Partial pulpotomy is a form of vital pulp therapy that consists of the surgical amputation of 2 - 3 mm of damaged, inflamed, coronal pulp tissue, followed by placing a biocompatible agent to promote healing and maintain vitality of the remaining pulp tissue. [2]

In young permanent teeth, pulpotomy is classically undertaken to promote apexogenesis. The objective is to promote root development and apical closure. Once root end development and apical closure are achieved, the root canal treatment is completed. [2] However, it has been proved that mere pulp exposure does not cause pulpitis in the absence of bacteria. [3] Recent studies have proposed that as long as a hermetic seal is ensured, root canal treatment is not necessary following pulpotomy. [4]

Despite the long history of usage of a calcium hydroxide dressing in different forms, for vital pulp therapy, several disadvantages have been listed with the use of calcium hydroxide material, such as, obliteration of the pulp chamber, high solubility in oral fluids, and lack of adhesion to the dentin. [5],[6],[7] There have been attempts to find other suitable materials that will permit dentin bridge formation, as an alternative to calcium hydroxide. [5] The other disadvantage being that multiple visits are required and animal studies have proved that the hard tissue formed under calcium hydroxide has tunnel defects. [6] It is well-documented that sealing the cavities from bacterial ingress is a determinant factor for the success of vital pulp treatment. [4]

Several in vitro and in vivo studies have reported that MTA has good physical characteristics [8] and is biocompatible. [9] It also provides a very good seal, [10] has excellent marginal adaptation, [11] and maintains a high pH [12] for a long period of time. Of late, Agamy et al. concluded that Gray MTA was superior to formocresol and white MTA, when used for pulpotomies in primary teeth. [13]

In this article we report two cases of traumatized maxillary permanent central incisors, which were treated with MTA following partial pulpotomy.


   Case Reports Top


Case 1

A 15-year-old male patient reported to our department with a complaint of a fractured upper anterior tooth. History revealed trauma to the tooth 24 hours prior. On examination, an Ellis class III fracture with clinical pulp involvement was seen in relation to 21. The patient experienced pain on stimulus. The exposed pulp (2 Χ 2 mm) was bright red in color, which was an indication of patent blood supply to the pulp.The tooth responded normally to the electric pulp testing that was performed on the labial surface, which signified the healthy status of the pulp. Hence, a partial pulpotomy procedure was planned with MTA.

Case 2

A 25-year-old male patient reported to our department with the complaint of a fractured upper anterior tooth. History revealed trauma to the tooth 48 hours prior. On examination, an Ellis class III fracture with clinical pulp involvement was seen in relation to 21. The patient experienced pain on stimulus. The exposed pulp was bright red in color, which was an indication of patent blood supply to the pulp.The tooth responded normally to the electric pulp testing that was performed on the labial surface, which signified the healthy status of the pulp. Hence a partial pulpotomy procedure was planned with MTA.

Clinical procedure

The tooth was anesthetized with local infiltration of 0.6ml lignocaine (1:200000 adrenaline) and isolated with a rubber dam. The teeth were disinfected with chlorhexidine. The sharp fractured margins were smoothened; the exposed pulp and surrounding dentin were flushed clean with isotonic saline solution. The superficial layer of the exposed pulp and the surrounding tissue were excised to a depth of 2 mm using a high speed diamond bur, with a light touch, using a water coolant. The surface of the remaining pulp was irrigated with isotonic saline until the bleeding was arrested. White MTA was freshly mixed and placed over the exposed pulp, following which a saline-soaked cotton pellet was placed over the MTA for 45 minutes to allow it to set. The exposed dentin and MTA were both sealed with GIC (Glass ionomer cement) and a direct composite restoration was performed, to build up the fractured tooth structure.

Follow-ups

Periodic follow-ups were carried out at one, seven, 15, and 30 days, three months, six months, one year, one-and-a-half-years, and two years. Pulp sensitivity was tested with the help of a pulse-oximeter (Custom made pulse-oximeter probe developed by Gopikrishna et al.) [14] and an electric pulp tester (EPT) after 24 hours. The tooth was found to respond positively during the follow-up visits. The intra-oral periapical radiograph of the tooth was also taken; the periapical region appeared normal (lamina dura was intact without any peripaical changes) [Figure 1] and [Figure 2].


   Discussion Top


Several factors influence the treatment decisions of a clinician when encountering a tooth with a pulp exposure. Cvek et al. reported that partial pulpotomies after complicated crown fractures had a 96% success rate. [15] One of the advantages of partial pulpotomy, when compared to cervical or complete pulpotomy, is the preservation of the cell-rich coronal pulp tissue. This tissue possesses better healing potential and can maintain the physiological deposition of dentin. [16] However, the chances of the pulp becoming necrotic or developing a calcific metamorphosis are also present, and hence, a periodic follow-up is mandatory in such cases. However, age is a very important criterion for the selection of patients for any vital pulp therapy. Older pulps are more fibrous, less cellular, and may have less blood supply, thus affecting the treatment outcome.[17]

Studies on animal models have proved that the hard tissue bridge under calcium hydroxide has many imperfections and tunnel defects that may permit bacterial leakage, whereas, the bridge formed after MTA placement is complete with no tunnels or imperfections. Moreover, in human teeth it is reported that at six months, a 0.43 mm thick dentin bridge is evident when MTA is used compared to 0.15 mm with no odontoblastic layer in the case of calcium hydroxide. [18] In recent times, Accorinte et al., have reported that pulp healing with calcium hydroxide is slower than that with MTA, when used as a pulp capping agent in human teeth. [5] Also Sarkar et al. have proved that MTA can bond chemically to the dentin by a diffusion-controlled reaction between the apatite layer of MTA and the dentin. [19] Of late, Chen et al. have shown that MTA is biocompatible and appears to have osetoconduction effects on the bone cells [20]

In our cases we used white MTA, due to esthetic concerns, in the anterior region. [21] A waiting period of 45 minutes was followed, to allow the setting of MTA, before the placement of GIC, as this was the recommended protocol by Nandini et al.[22] The longer setting time of MTA is a disadvantage. Of late, Kogan et al. have shown that NaOCl gel added as an additive has demonstrated good working times and improved setting times, but the effect of such additives on the pulp have not yet been studied. [23]

Thus, considering the age of the patient, recently traumatized teeth with pulp exposure, if treated with partial pulpotomy within 24 - 48 hours after the injury, can act as a permanent restorative procedure, without the need for endodontic treatment, provided a bacteria-tight seal is obtained.


   Conclusion Top


Thus, considering the age of the patient, recently traumatized teeth with pulp exposure in a young individual, if treated with partial pulpotomy within 24 - 48 hours after the injury, can act as a permanent restorative procedure without the need for endodontic treatment, provided a bacteria-tight seal is obtained. Further detailed clinical studies or long-term, follow-up results are needed.

 
   References Top

1.Mejare I, Cvek M. Partial pulpotomy in young permanent teeth with deep carious lesions. Endod Dent Traumatol 1993;9:238-42.   Back to cited text no. 1      
2.The role of endodontics after dental traumatic injuries In: Cohen S Bums RC, eds. Pathways of the pulp. 9th ed. St.Louis: Mosby; 2005. p. 616-8.  Back to cited text no. 2      
3.Kakehashi S, Stanley HR, Fitzgerald RJ. The effects of surgical exposures of dental pulps in germfree and conventional laboratory rats. J South Calif Dent Assoc 1966;34:449-51.  Back to cited text no. 3  [PUBMED]    
4.Barrieshi-Nusair KM, Qudeimat MA. A prospective clinical study of mineral trioxide aggregate for partial pulpotomy in cariously exposed permanent teeth. J Endod 2006;32:731-5.  Back to cited text no. 4  [PUBMED]  [FULLTEXT]  
5.Accorinte Mde L, Holland R, Reis A, Bortoluzzi MC, Murata SS, Dezan E Jr, et al. Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp-capping agents in human teeth. J Endod 2008;34:1-6.  Back to cited text no. 5  [PUBMED]  [FULLTEXT]  
6.Cox CF, Subay RK, Ostro E, Suzuki S, Suzuki SH. Tunnel defects in dentin bridges: their formation following direct pulp capping. Oper Dent 1996;21:4-11.  Back to cited text no. 6      
7.Cox CF, Subay RK, Suzuki S, Suzuki SH, Ostro E. Biocompatibility of various dental materials: pulp healing with a surface seal. Int J Periodontics Restorative Dent 1996;16:240-51.   Back to cited text no. 7      
8.Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod 1995;21:349-53.   Back to cited text no. 8  [PUBMED]  [FULLTEXT]  
9.Kettering JD, Torabinejad M. Investigation of mutagenicity of mineral trioxide aggregate and other commonly used root-end filling materials. J Endod 1995;21:537-42.   Back to cited text no. 9  [PUBMED]  [FULLTEXT]  
10.Barrieshi-Nusair KM, Hammad HM. Intracoronal sealing comparison of mineral trioxide aggregate and glass ionomer. Quintessence Int 2005;36:539-45.   Back to cited text no. 10  [PUBMED]    
11.Torabinejad M, Smith PW, Kettering JD, Pitt Ford TR. Comparative investigation of marginal adaptation of mineral trioxide aggregate and other commonly used root-end filling materials. J Endod 1995;21:295-9.  Back to cited text no. 11  [PUBMED]  [FULLTEXT]  
12.Moghaddame-Jafari S, Mantellini MG, Botero TM, McDonald NJ, Nφr JE. In vitro Effect of ProRoot MTA on pulp cell apoptosis and proliferation. J Endod 2005;31:387-91.   Back to cited text no. 12      
13.Agamy HA, Bakry NS, Mounir MM, Avery DR. Comparison of mineral trioxide aggregate and formocresol as pulp-capping agents in pulpotomized primary teeth. Pediatr Dent 2004;26:302-9.  Back to cited text no. 13  [PUBMED]  [FULLTEXT]  
14.Gopikrishna V, Tinagupta K, Kandaswamy D. Evaluation of efficacy of a new custom-made pulse oximeter dental probe in comparison with the electrical and thermal tests for assessing pulp vitality. J Endod 2007;33:411-4.  Back to cited text no. 14  [PUBMED]  [FULLTEXT]  
15.Cvek M. A clinical report on partial pulpotomy and capping with calcium hydroxide in permanent incisors with complicated crown fracture. J Endod 1978;4:232-7.  Back to cited text no. 15  [PUBMED]  [FULLTEXT]  
16.Fong CD, Davis MJ. Partial pulpotomy for immature permanent teeth, its present and future. Pediatr Dent 2002;24:29-32.  Back to cited text no. 16  [PUBMED]    
17.Massler M. Therapy conductive to healing of the human pulp. Oral Surg Oral Med Oral Pathol 1972;34:122-30.  Back to cited text no. 17  [PUBMED]    
18.Aeinehchi M, Eslami B, Ghanbariha M, Saffar AS. Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp-capping agents in human teeth: a preliminary report. Int Endod J 2003;36:225-3.  Back to cited text no. 18  [PUBMED]  [FULLTEXT]  
19.Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod 2005;31:97-100.  Back to cited text no. 19  [PUBMED]  [FULLTEXT]  
20.Chen CL, Huang TH, Ding SJ, Shie MY, Kao CT. Comparison of calcium and silicate cement and mineral trioxide aggregate biologic effects and bone markers expression in MG63 cells. J Endod 2009;35:682-5.   Back to cited text no. 20  [PUBMED]  [FULLTEXT]  
21.Dammaschke T, Gerth HU, Zuchner H, Schafer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent Mater 2005;21:731-8.  Back to cited text no. 21      
22.Nandini S, Ballal S, Kandaswamy D. Influence of glass-ionomer cement on the interface and setting reaction of mineral trioxide aggregate when used as a furcal repair material using laser Raman spectroscopic analysis. J Endod 2007;33:167-72.   Back to cited text no. 22  [PUBMED]  [FULLTEXT]  
23.Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod 2006;32:569-72.  Back to cited text no. 23  [PUBMED]  [FULLTEXT]  

Top
Correspondence Address:
M Abarajithan
Senior Lecturer, Department of Conservative Dentistry and Endodontics, Meenakshiammal Dental College and Hospitals, Chennai - 600095
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-0707.66724

Rights and Permissions


    Figures

  [Figure 1], [Figure 2]

This article has been cited by
1 Pulpotomy for treatment of complicated crown fractures in permanent teeth: A systematic review
Aisling Donnelly, Federico Foschi, Paul McCabe, Henry F. Duncan
International Endodontic Journal. 2022;
[Pubmed] | [DOI]
2 COMPARATIVE CLINICAL, RADIOGRAPHICAL AND HISTOLOGICAL EVALUATION OF CORONAL PULPOTOMY TECHNIQUE WITH PRF AND A NOVEL CROSSLINKED PRF AS AN ALTERNATIVE TO PULPECTOMY FOR PRESERVING THE TOOTH VITALITY IN CONTEXT OF TISSUE ENGINEERING.
Suman Kar, R. R. Paul, H. D. Adhikari, Swagata Gayen, Sandip Sinha
INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH. 2022; : 84
[Pubmed] | [DOI]
3 The outcome of partial pulpotomy in traumatized permanent anterior teeth – A systematic review and meta-analysis
S Madhumita, Dhanavel Chakravarthy, S Vijayaraja, SAjith Kumar, DS Kavimalar
Indian Journal of Dental Research. 2022; 33(2): 203
[Pubmed] | [DOI]
4 Management of open apices in thirteen traumatized permanent incisors using mineral trioxide aggregate: Case series
Gulhan Koyuncuoglu,Feyza Nur Gorken,Goksen Ikikarakayali,Sevgi Zorlu,Arzu Pinar Erdem,Elif Sepet,Gamze Aren
Pediatric Dental Journal. 2013; 23(1): 51
[Pubmed] | [DOI]
5 Recommendations for using regenerative endodontic procedures in permanent immature traumatized teeth
Franklin Garcia-Godoy,Peter E. Murray
Dental Traumatology. 2012; 28(1): 33
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
 
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  
 


    Abstract
    Introduction
    Case Reports
    Discussion
    Conclusion
    References
    Article Figures

 Article Access Statistics
    Viewed6502    
    Printed268    
    Emailed1    
    PDF Downloaded503    
    Comments [Add]    
    Cited by others 5    

Recommend this journal