Journal of Conservative Dentistry

ORIGINAL ARTICLE
Year
: 2015  |  Volume : 18  |  Issue : 5  |  Page : 399--404

An ex-vivo comparative study of root-end marginal adaptation using grey mineral trioxide aggregate, white mineral trioxide aggregate, and Portland cement under scanning electron microscopy


Akash Kumar Baranwal1, Mohan L Paul2, Dibyendu Mazumdar3, Haridas Das Adhikari2, Nishant K Vyavahare4, Kapil Jhajharia5 
1 Department of Conservative Dentistry and Endodontics, Faculty of Dental Sciences, IMS, BHU, Varanasi, Uttar Pradesh, India
2 Department of Conservative Dentistry and Endodontics, Dr. R. Ahmed Dental College and Hospital, Kolkata, West Bengal, India
3 Department of Dental, Calcutta Medical College, Kolkata, West Bengal, India
4 Department of Conservative Dentistry and Endodontics, Singhad Dental College, Pune, Maharashtra, India
5 Department of Conservative Dentistry and Endodontics, Melaka-Manipal Medical College, Melaka, Malaysia

Correspondence Address:
Dr. Akash Kumar Baranwal
Faculty of Dental Sciences, IMS, BHU, Varanasi - 221 005, Uttar Pradesh
India

Context: Where nonsurgical endodontic intervention is not possible, or it will not solve the problem, surgical endodontic treatment must be considered. A major cause of surgical endodontic failures is an inadequate apical seal, so the use of the suitable substance as root-end filling material that prevents egress of potential contaminants into periapical tissue is very critical. Aims: The aim of the present ex-vivo study was to compare and evaluate the three root-end filling materials of mineral trioxide aggregate (MTA) family (white MTA [WMTA], grey MTA [GMTA] and Portland cement [PC]) for their marginal adaptation at the root-end dentinal wall using scanning electron microscopy (SEM). Materials and Methods: Sixty human single-rooted teeth were decoronated, instrumented, and obturated with Gutta-percha. After the root-end resection and apical cavity preparation, the teeth were randomly divided into three-experimental groups (each containing 20 teeth) and each group was filled with their respective experimental materials. After longitudinal sectioning of root, SEM examination was done to determine the overall gap between retrograde materials and cavity walls in terms of length and width of the gap (maximum) at the interface. Descriptive statistical analysis was performed to calculate the means with corresponding standard errors, median and ranges along with an analysis of variance and Tukey«SQ»s test. Results: The least overall gap was observed in GMTA followed by PC and WMTA. While after statistically analyzing the various data obtained from different groups, there was no significant difference among these three groups in terms of marginal adaptation. Conclusion: GMTA showed the best overall adaptation to root dentinal wall compared to PC and WMTA. Being biocompatible and cheaper, the PC may be an alternative but not a substitute for MTA.


How to cite this article:
Baranwal AK, Paul ML, Mazumdar D, Adhikari HD, Vyavahare NK, Jhajharia K. An ex-vivo comparative study of root-end marginal adaptation using grey mineral trioxide aggregate, white mineral trioxide aggregate, and Portland cement under scanning electron microscopy.J Conserv Dent 2015;18:399-404


How to cite this URL:
Baranwal AK, Paul ML, Mazumdar D, Adhikari HD, Vyavahare NK, Jhajharia K. An ex-vivo comparative study of root-end marginal adaptation using grey mineral trioxide aggregate, white mineral trioxide aggregate, and Portland cement under scanning electron microscopy. J Conserv Dent [serial online] 2015 [cited 2020 Sep 27 ];18:399-404
Available from: http://www.jcd.org.in/article.asp?issn=0972-0707;year=2015;volume=18;issue=5;spage=399;epage=404;aulast=Baranwal;type=0