Journal of Conservative Dentistry
Home About us Editorial Board Instructions Submission Subscribe Advertise Contact e-Alerts Login 
Users Online: 1414
Print this page  Email this page Bookmark this page Small font sizeDefault font sizeIncrease font size
 


 
Table of Contents   
CASE REPORT  
Year : 2016  |  Volume : 19  |  Issue : 6  |  Page : 587-590
Successful orthograde treatment of dens invaginatus Type 3 with a main C-shaped canal based on cone-beam computed tomography evaluation


Department of Endodontics, Israel Defense Forces Medical Corps, Tel Hashomer, Israel

Click here for correspondence address and email

Date of Submission24-Jul-2016
Date of Decision13-Sep-2016
Date of Acceptance03-Oct-2016
Date of Web Publication14-Nov-2016
 

   Abstract 

Dens invaginatus is a rare anatomic variation that is found primarily in maxillary lateral incisors. The management of dens invaginatus is challenging for clinicians; diagnosing the type of malformation, choosing the most appropriate treatment, and carrying out treatment are complicated by the intricate root system of these teeth. The following case report describes the diagnosis and treatment planning of dens invaginatus Type 3 after cone-beam computed tomography evaluation.

Keywords: Cone-beam computed tomography; C-shaped canal; dens invaginatus

How to cite this article:
Solomonov M, Itzhak JB, Levin A, Katzenell V, Shemesh A. Successful orthograde treatment of dens invaginatus Type 3 with a main C-shaped canal based on cone-beam computed tomography evaluation. J Conserv Dent 2016;19:587-90

How to cite this URL:
Solomonov M, Itzhak JB, Levin A, Katzenell V, Shemesh A. Successful orthograde treatment of dens invaginatus Type 3 with a main C-shaped canal based on cone-beam computed tomography evaluation. J Conserv Dent [serial online] 2016 [cited 2017 Apr 29];19:587-90. Available from: http://www.jcd.org.in/text.asp?2016/19/6/587/194034

   Introduction Top


Dens invaginatus is an anatomic variation that has been described as a “tooth within a tooth” because it is a developmental defect resulting from the involution of the crown before calcification has occurred. Dens invaginatus is observed primarily in maxillary lateral incisors, and the prevalence ranges between 0.3% and 10%.[1]

Dens invaginatus is challenging to treat because of the complex root canal system.

The most commonly used classification of invaginated teeth was published by Oehlers in 1957.[2]

Several treatments have been suggested in literature, including endodontic treatment of the invagination alone or along with the main canal, surgical treatment, or removal of the entire tooth.[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]

Cone-beam computed tomography (CBCT) is a three-dimensional (3D) radiographic technique that is useful for various endodontic applications, such as the diagnosis and treatment of teeth with complex or abnormal root canal anatomy.[9],[13],[14]

The aim of this case report is to describe how CBCT was used for diagnosing, treatment planning, and successfully managing a complex dens invaginatus case with endodontic therapy.


   Case Report Top


A 22-year-old male was referred by his dentist to the Department of Endodontics at the Oral Maxillofacial Medical Center in Tel Hashomer due to the abnormal anatomy of tooth 12.

The patient reported a history of frequent episodes of pain (at the time, he was unable to chew or bite food, and the tooth was tender when touched).

The oral examination and the evaluation of the patient's periodontal status revealed a good oral hygiene. A composite filling was detected on the palatal aspect of the crown and an orthodontic splint retained teeth 13–23 [Figure 1]. Periodontal probing revealed pocket depths of less than 3 mm, and there was no excess mobility of the tooth. The tooth was sensitive to percussion and palpation and did not respond to a cold thermal test (Endo Ice, Coltene Whaldent Inc.; Cuyahoga Falls, OH, USA). The adjacent teeth responded positively to a cold test, and there was no excess mobility or sensitivity to palpation or percussion.
Figure 1: Tooth 12-preoperative periapical radiograph

Click here to view


Radiographic examination revealed that tooth 12 presented with dens invaginatus and had an associated apical radiolucency extending from the distal aspect of tooth 12 to the mesial aspect of tooth 13. The size of the radiolucency was over 20 mm, and the apical border was not visible on the film [Figure 1].

Due to the irregular anatomy of the tooth, the patient was referred for a CBCT examination to visualize the exact morphology of the tooth and to clarify the size and the exact borders of the radiolucent area.

Cross-sectional and longitudinal CBCT (Carestream 9300, France) slices revealed that the invagination extended along the entire root length. The invagination was embedded into the mesial wall of the root canal on the coronal third, and the main canal partly surrounded the invagination in a C-shaped form. In the middle third, the invagination was detached from the root dentin, and the main canal surrounded the invagination. In the apical third, two separate canals were observed [Figure 2].
Figure 2: Cone-beam computed tomography. Sagittal and coronal sections: (a) coronal third, (b) middle third, and (c) apical third

Click here to view


The 3D lesion size was 9.73 mm × 9.49 mm × 13.9 mm [Figure 3]. The lesion bordered the floor of the nasal cavity and the mesial aspect of tooth 13, and the lesion penetrated into the cortical plates of the palatal and buccal bone.
Figure 3: Cone-beam computed tomography for 3-dimentional measurement of the lesion

Click here to view


Based on the clinical and radiographic examination, the following diagnosis was made: Pulpal Necrosis, Symptomatic Apical Periodontitis, and Dens Invaginatus Type 3.[2]

During the first appointment, the tooth was isolated with a rubber dam, and a lingual access cavity was prepared under a surgical operating microscope (Carl Zeiss Surgical GmbH, Oberkochen, Germany) based on the CBCT evaluation as a guide. The first step was to gain access to the location of the invagination by carefully cleaning the lingual pit [Figure 4]a. The second step was to enter the main C-shaped canal with a buccodistal angular approach [Figure 4]b. Necrotic tissue was detected in both the invaginated canal and the main canal. The working length was predetermined by CBCT [15] and confirmed with an electronic apex locator (Dentaport ZX, Morita, Tokyo, Japan) and a radiograph [Figure 5].
Figure 4: Clinical photographs and cone-beam computed tomography sagittal sections: (a) access to dens, (b) main C-shaped canal

Click here to view
Figure 5: Working length determination: (a) periapical radiograph, (b) preliminary cone-beam computed tomography examination

Click here to view


Biomechanical preparation of the narrow, invaginated canal was performed with nickel-titanium (NiTi) rotary instruments, G-Files (G1, G2, Micro-Mega, Besançon, France), Revo-S files (Micro-Mega, Besançon, France), and irrigated with 3% sodium hypochlorite (NaOCl). The main C-shaped canal was prepared with a Self-Adjusting File (SAF) 1.5-mm file (ReDent-Nova, Ra'anana, Israel) and irrigated with 3% NaOCl using the special VATEA irrigation pump (ReDent-Nova, Ra'anana, Israel) with an irrigant flow of 4 ml/min.[16]

Final irrigation was performed with 17% ethylene diamine tetra-acetic acid (EDTA) and a creamy, aqueous calcium hydroxide dressing was placed in the canals with a spiral Lentulo. The access cavity was temporized with Cavit (ESPE, Seefeld, Germany) and IRM (Caulk, DeTrey Dentsply, Saint-Quentin-Yvelines, France).

At the second appointment (2 weeks later), clinical symptoms had disappeared. After removing the calcium hydroxide with copious irrigation of NaOCl using the SAF,[17] final irrigation with 17% EDTA was performed. Both canals were dried and obturated with a combination technique: Cold lateral compaction of Gutta-percha in the apical third using NiTi finger spreaders (Dentsply Maillefer, Ballaigues, Switzerland) and warm compaction in the middle and coronal thirds with B&L Alpha (B&L Biotech, Gunpo, Korea) and Machtou pluggers (Dentsply Maillefer, Ballaigues, Switzerland). AH Plus (Dentsply Maillefer, Ballaigues, Switzerland) was used as a sealer. The access cavity was temporized with the EQUIA glass ionomer (GC America, Alsip, IL., USA) [Figure 6]a.
Figure 6: (a) postoperative clinical photograph and periapical radiograph, (b) 24-month follow-up

Click here to view


A follow-up examination at 24 months revealed that the tooth was clinically asymptomatic, lacked tenderness to percussion and palpation, had normal mobility, and lacked deep pockets on probing. Radiographic examination revealed a reduction in the size of the lesion [Figure 6]b.


   Discussion Top


Dens invaginatus is challenging to treat because of the complex root canal system. Dens invaginatus creates abnormal anatomy in a tooth and primarily occurs in lateral maxillary incisors and occasionally in premolars.[18],[19]

Treatment options for dens invaginatus include prophylactic treatments, endodontic treatment of the invaginated canal alone or along with the main canal, surgical treatment, or removal of the entire tooth.[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]

CBCT enables a 3D evaluation of teeth with complex or abnormal root canal anatomy.[9],[13],[14] Visualizing the exact anatomy of the root canal can influence treatment decisions and lead to more appropriate treatment plans. Follow-up examinations do not include CBCT because of the as low as reasonably achievable principle.

In this case report, CBCT enabled a 3D visualization of the abnormal anatomy and showed that the invagination occupied most of the canal. In the coronal third of the canal, the invagination was embedded into the mesial wall, while in the middle third, the invagination was detached from the root dentin and the main canal surrounded the entire invagination. Therefore, complete removal of the invagination was impossible. Moreover, removal of the invaginated portion might have biomechanical consequences, such as weakening the tooth structure because of the loss of healthy dentin.[20],[21] The main canal of the tooth and the canal created by the invagination followed the entire length and varied in their cross-sectional outlines: The main canal was C-shaped and the invagination created a narrow, round canal. After reviewing all of the findings, we elected to perform conservative, orthograde endodontic therapy in both the invaginated portion and the main C-shaped canal with different instrumentation: The SAF for the C-shaped canal [16] and NiTi rotary instruments for the narrow, round pseudocanal.

The subsequent warm compaction technique forced the obturation material into the area surrounding the invaginated portion in the middle third of the main canal, which was observed in the final radiograph. Our assumption was that the necrotic tissue in this area was dissolved by the synergistic effect of NaOCl with the SAF, followed by a calcium hydroxide dressing.[22],[23],[24],[25],[26],[27],[28],[29]


   Conclusion Top


This report describes the management of dens invaginatus Type 3 with a 3D CBCT evaluation to guide the treatment planning and clinical decision-making process for this complex, anatomical variation.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
   References Top

1.
Alani A, Bishop K. Dens invaginatus. Part 1: Classification, prevalence and aetiology. Int Endod J 2008;41:1123-36.  Back to cited text no. 1
    
2.
Oehlers FA. Dens invaginatus (dilated composite odontome). I. Variations of the invagination process and associated anterior crown forms. Oral Surg Oral Med Oral Pathol 1957;10:1204-18.  Back to cited text no. 2
    
3.
Holtzman L. Conservative treatment of supernumerary maxillary incisor with dens invaginatus. J Endod 1998;24:378-80.  Back to cited text no. 3
    
4.
De Sousa SM, Bramante CM. Dens invaginatus: Treatment choices. Endod Dent Traumatol 1998;14:152-8.  Back to cited text no. 4
    
5.
Tsurumachi T, Hayashi M, Takeichi O. Non-surgical root canal treatment of dens invaginatus type 2 in a maxillary lateral incisor. Int Endod J 2002;35:310-4.  Back to cited text no. 5
    
6.
Creaven J. Dens invaginatus-type malformation without pulpal involvement. J Endod 1975;1:79-80.  Back to cited text no. 6
    
7.
Kulild JC, Weller RN. Treatment considerations in dens invaginatus. J Endod 1989;15:381-4.  Back to cited text no. 7
    
8.
Skoner JR, Wallace JA. Dens invaginatus: Another use for the ultrasonic. J Endod 1994;20:138-40.  Back to cited text no. 8
    
9.
Kfir A, Telishevsky-Strauss Y, Leitner A, Metzger Z. The diagnosis and conservative treatment of a complex type 3 dens invaginatus using cone beam computed tomography (CBCT) and 3D plastic models. Int Endod J 2013;46:275-88.  Back to cited text no. 9
    
10.
Vier-Pelisser FV, Pelisser A, Recuero LC, Só MV, Borba MG, Figueiredo JA. Use of cone beam computed tomography in the diagnosis, planning and follow up of a type III dens invaginatus case. Int Endod J 2012;45:198-208.  Back to cited text no. 10
    
11.
Munavalli A, Kambale S, Ramesh S, Ajgaonkar N. Mandibular first molar with single root and single root canal. J Conserv Dent 2015;18:346-8.  Back to cited text no. 11
[PUBMED]  Medknow Journal  
12.
Da Silva Neto UX, Hirai VH, Papalexiou V, Gonçalves SB, Westphalen VP, Bramante CM, et al. Combined endodontic therapy and surgery in the treatment of dens invaginatus type 3: Case report. J Can Dent Assoc 2005;71:855-8.  Back to cited text no. 12
    
13.
Durack C, Patel S. The use of cone beam computed tomography in the management of dens invaginatus affecting a strategic tooth in a patient affected by hypodontia: A case report. Int Endod J 2011;44:474-83.  Back to cited text no. 13
    
14.
Patel S. The use of cone beam computed tomography in the conservative management of dens invaginatus: A case report. Int Endod J 2010;43:707-13.  Back to cited text no. 14
    
15.
Jeger FB, Janner SF, Bornstein MM, Lussi A. Endodontic working length measurement with preexisting cone-beam computed tomography scanning: A prospective, controlled clinical study. J Endod 2012;38:884-8.  Back to cited text no. 15
    
16.
Solomonov M, Paqué F, Fan B, Eilat Y, Berman LH. The challenge of C-shaped canal systems: A comparative study of the self-adjusting file and ProTaper. J Endod 2012;38:209-14.  Back to cited text no. 16
    
17.
Topçuoglu HS, Düzgün S, Ceyhanli KT, Akti A, Pala K, Kesim B. Efficacy of different irrigation techniques in the removal of calcium hydroxide from a simulated internal root resorption cavity. Int Endod J 2015;48:309-16.  Back to cited text no. 17
    
18.
Al Omari F, Al-Omari IK. Cleft lip and palate in Jordan: Birth prevalence rate. Cleft Palate Craniofac J 2004;41:609-12.  Back to cited text no. 18
    
19.
Tagger M. Nonsurgical endodontic therapy of tooth invagination. Report of a case. Oral Surg Oral Med Oral Pathol 1977;43:124-9.  Back to cited text no. 19
    
20.
Sornkul E, Stannard JG. Strength of roots before and after endodontic treatment and restoration. J Endod 1992;18:440-3.  Back to cited text no. 20
    
21.
Krishan R, Paqué F, Ossareh A, Kishen A, Dao T, Friedman S. Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars. J Endod 2014;40:1160-6.  Back to cited text no. 21
    
22.
Hasselgren G, Olsson B, Cvek M. Effects of calcium hydroxide and sodium hypochlorite on the dissolution of necrotic porcine muscle tissue. J Endod 1988;14:125-7.  Back to cited text no. 22
    
23.
Türkün M, Cengiz T. The effects of sodium hypochlorite and calcium hydroxide on tissue dissolution and root canal cleanliness. Int Endod J 1997;30:335-42.  Back to cited text no. 23
    
24.
Wadachi R, Araki K, Suda H. Effect of calcium hydroxide on the dissolution of soft tissue on the root canal wall. J Endod 1998;24:326-30.  Back to cited text no. 24
    
25.
Andersen M, Lund A, Andreasen JO, Andreasen FM.In vitro solubility of human pulp tissue in calcium hydroxide and sodium hypochlorite. Endod Dent Traumatol 1992;8:104-8.  Back to cited text no. 25
    
26.
De-Deus G, Barino B, Marins J, Magalhães K, Thuanne E, Kfir A. Self-adjusting file cleaning-shaping-irrigation system optimizes the filling of oval-shaped canals with thermoplasticized gutta-percha. J Endod 2012;38:846-9.  Back to cited text no. 26
    
27.
Siqueira JF Jr., Alves FR, Almeida BM, de Oliveira JC, Rôças IN. Ability of chemomechanical preparation with either rotary instruments or self-adjusting file to disinfect oval-shaped root canals. J Endod 2010;36:1860-5.  Back to cited text no. 27
    
28.
Wu MK, Kast'áková A, Wesselink PR. Quality of cold and warm gutta-percha fillings in oval canals in mandibular premolars. Int Endod J 2001;34:485-91.  Back to cited text no. 28
    
29.
Metzger Z, Zary R, Cohen R, Teperovich E, Paqué F. The quality of root canal preparation and root canal obturation in canals treated with rotary versus self-adjusting files: A three-dimensional micro-computed tomographic study. J Endod 2010;36:1569-73.  Back to cited text no. 29
    

Top
Correspondence Address:
Michael Solomonov
Ha-Kfar, 13/54, Kiryat Ono
Israel
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-0707.194034

Rights and Permissions


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]



 

Top
 
 
 
  Search
 
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  
 


    Abstract
   Introduction
   Case Report
   Discussion
   Conclusion
    References
    Article Figures

 Article Access Statistics
    Viewed363    
    Printed12    
    Emailed0    
    PDF Downloaded120    
    Comments [Add]    

Recommend this journal