Journal of Conservative Dentistry
Home About us Editorial Board Instructions Submission Subscribe Advertise Contact e-Alerts Login 
Users Online: 689
Print this page  Email this page Bookmark this page Small font sizeDefault font sizeIncrease font size
 


 
Table of Contents   
ORIGINAL ARTICLE  
Year : 2016  |  Volume : 19  |  Issue : 3  |  Page : 254-258
The evaluation of interfaces between MTA and two types of GIC (conventional and resin modified) under an SEM: An in vitro study


1 Department of Conservative Dentistry and Endodontics, Mahatma Gandhi Mission's (MGM) Dental College, Navi Mumbai, Maharashtra, India
2 Department of Conservative Dentistry and Endodontics, Dr. D. Y. Patil Dental College, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India

Click here for correspondence address and email

Date of Submission13-Jan-2016
Date of Decision01-Mar-2016
Date of Acceptance05-Apr-2016
Date of Web Publication9-May-2016
 

   Abstract 

Context: Mineral trioxide aggregate (MTA) is a biocompatible repair material that is often used along with glass ionomer cement (GIC) in many clinical situations.
Aims: In this study, the interface of GIC and MTA was examined, and the effect of time on this interface was tested.
Settings and Design: Materials tested were set and plastic moulds and analysed.
Materials and Methods: Forty 9-mm hollow cylindrical glass molds were filled with MTA and then according to the group either conventional GIC or resin-modified GIC (RMGIC) is filled immediately or after 45 min. The specimens were then sectioned, carbon coated, and examined using a scanning electron microscope (SEM) and the elemental analysis was done.
Statistical Analysis: Observational study, no statistical analysis done.
Results: The SEM showed that both the groups underwent adhesive separation and gap formation at the interface. The specimens in which GIC was condensed over freshly mixed MTA (group IIA and group IIB) also showed cohesive separation in MTA; however, it was more in the GIC condensed after 45 min over MTA groups (group IA and group IB). The results were better for conventional GIC than RMGIC.
Conclusions: GIC can be applied over freshly mixed MTA with minimal effects on the MTA, but this effect decreases with time.

Keywords: Energy dispersive x-ray analysis (EDAX); glass ionomer cement (GIC); mineral trioxide aggregate (MTA); scanning electron microscope (SEM)

How to cite this article:
Patil A, Aggarwal S, Kumar T, Bhargava K, Rai V. The evaluation of interfaces between MTA and two types of GIC (conventional and resin modified) under an SEM: An in vitro study. J Conserv Dent 2016;19:254-8

How to cite this URL:
Patil A, Aggarwal S, Kumar T, Bhargava K, Rai V. The evaluation of interfaces between MTA and two types of GIC (conventional and resin modified) under an SEM: An in vitro study. J Conserv Dent [serial online] 2016 [cited 2019 Sep 19];19:254-8. Available from: http://www.jcd.org.in/text.asp?2016/19/3/254/181943

   Introduction Top


Mineral trioxide aggregate (MTA) was introduced as a retrograde filling material in 1993 by Torabinejad. It is composed of tricalcium silicate, dicalcium silicate, tricalcium aluminate, calcium sulfate, bismuth oxide, and small quantities of other oxides that alter its mechanical properties. [1] Initially, it was used to seal off all pathways of communication between the root canal and the exterior of a tooth. [2] It is now popular as a root-end filling material, [1],[2] in vital pulp therapy including direct pulp capping and pulpotomy of immature teeth [3] and as an apical barrier in immature teeth with necrotic pulps. It is now also productively used in regenerative endodontic procedures in immature teeth with apical periodontitis. [4],[5]

Glass ionomer cement (GIC) has been suggested as an effective intracanal barrier to prevent coronal microleakage. [6] It has established itself as a good sealing material with proven antibacterial properties. [7]

GIC is placed over MTA in cases of perforation repair, pulp capping, and external cervical resorption.

But the placement of GIC over MTA has always been a question in the mind of the clinician. Should the permanent restoration with GIC over the MTA be done in the same sitting or do you have to wait for a few days for the MTA to set.

It was thus the aim of our study to analyze the interface of conventional GIC and resin-modified GIC (RMGIC) with white MTA using scanning electron microscopy.


   Materials and methods Top


The materials used in this study were ProRoot white MTA (Dentsply Tulsa Dental, Johnson City, TN, USA), type II glass ionomer (Fuji II, GC, Tokyo, Japan), and light cured GIC (Fuji II LC, GC, Tokyo, Japan).

Specimen fabrication

Forty 9-mm hollow cylindrical plastic molds with both ends open were taken. Gelfoam, of 1 mm thickness, was placed from one open end of a glass mold sealed with modeling wax. The gelfoam was moistened with saline to simulate clinical conditions.

Then ProRoot white MTA was mixed according to the manufacturer's instructions. When the mixture exhibited a thick creamy consistency, it was immediately placed into the glass mold with a plastic instrument. A plugger followed by a wet cotton pellet was used to condense the material into the glass mold over the moist gelfoam for a thickness of 4 mm. Moist gauze was placed into the mold over the MTA for a thickness of 2 mm and was temporized with IRM for 2 mm. These measurements were marked with a marker pen before the placement of the material.

The specimens were divided into two groups of 10 specimens each.

Group I

Subgroup I-A


The temporary filling and the gauze were removed after 45 min. Type II GIC was mixed according to the manufacturer's instruction and was condensed over MTA with a plastic instrument. GIC was protected with petroleum jelly.

Subgroup I-B

The temporary filling and the gauze were removed after 45 min. Light cured (resin modified) GIC was mixed according to the manufacturer's instruction and was condensed over MTA with a plastic instrument and cured.

Group II

Subgroup II-A


Type II GIC was mixed according to the manufacturer's instruction and was condensed over the freshly placed MTA with a plastic instrument. GIC was protected with petroleum jelly.

Subgroup II-B

Light cured GIC was mixed according to the manufacturer's instruction and was condensed over the freshly placed MTA with a plastic instrument and cured.

The specimens were allowed to set for 10 min within the plastic tubes to ensure completion of the initial setting reaction of the GIC. Then the plastic tubes were removed carefully, and the specimens were stored at 37°C and 100% humidity for 24 h to encourage setting. All samples were prepared by the same operator.

Examination of interface

The specimens were vertically sectioned using diamond disk and an interface was observed under a scanning electron microscope (SEM) and by energy dispersive x-ray analysis (EDAX).


   Results Top


Microstructural analysis of the interface

The SEM showed that all the groups underwent adhesive separation and gap formation at the interface. This could have arisen out of the processing of the samples. The immediately condensed GIC group (group II-A and group II-B) also showed cohesive separation in MTA; however, it was more in the GIC condensed after 45 min over MTA group (group I-A and group I-B). All the groups showed vertical and horizontal cracks in GIC that were interconnected with each other in the internal voids within the GIC. These changes were contained in the outermost interfacial layer of the MTA, and the inner layers of MTA and GIC seemed affected.

The adhesion was better for the conventional GIC with MTA [Figure 1] than with the light cure GIC with MTA [Figure 2].
Figure 1: The interface between conventional GIC and MTA at 200x magnification

Click here to view
Figure 2: The interface between resin modified GIC and MTA at 400x magnification

Click here to view


As for the EDAX elemental analysis, calcium appeared to be evenly dispersed as densely packed fine particles predominantly on the MTA side [Figure 3] and [Figure 4].
Figure 3: EDAX report showing more Ca penetration at the interface between conventional GIC and MTA

Click here to view
Figure 4: EDAX report showing Ca penetration at the interface between resin modified GIC and MTA

Click here to view



   Discussion Top


The various advantageous properties of MTA include high biocompatibility, radiopacity, low solubility, and high alkalinity (pH value of MTA), which is 10.2 immediately after mixing, and rises to 12.5 and remains constant after 3 h (Torabinejad et al. 1995) (pH = 12.5) that gives it its antimicrobial properties. [8] MTA is a hydraulic type of cement, meaning that it sets by reacting with water, and is then stable in water. When mixed with water, it forms via an exothermic reaction. The setting reactions in MTA are approximated to be similar to those in Portland cement, which are best studied by analyzing the hydration of its individual components. The composition of MTA was verified by experimentation by Camelleri. [9] The two most important hydration reactions are those of the greatest constituents, tricalcium silicate, and dicalcium silicate. Tricalcium silicate sets via the following reaction (Bhatty 1991; Ramachandran et al. 2003):

2(3CaO-SiO2) + 6H2O→3CaO - 2SiO2 - 3H2O + 3Ca(OH)2

Directions for use of MTA specify a working time of 5 min and state that it will "set over a period of 4 h". Alternatively, the setting time of MTA has been quoted by different researchers as 165 min (Torabinejad et al. 1995), 45-140 min for initial and final setting (Chng et al. 2005), 40-140 min for initial and final setting (Islam et al. 2006), 50 min (Kogan et al. 2006), 220-250 min (Ding et al. 2008), 151 min (Huang et al. 2008), and 150 min (Porter et al. 2010).

One of the main disadvantages of using MTA is its long setting time (2 h, 45 min). MTA sets into a hard mass, in the presence of moisture by forming calcium hydroxide and silicate hydrate gel. [10],[11] But the complete setting of MTA occurs after about 21 days. [12] Manufacturers claim that a moist cotton pellet should be placed over MTA for 4 h to allow its setting; thus, a second clinical sitting becomes mandatory for the placement of a final restoration over MTA. In the recent time, various modifications have been done to decrease the setting time of MTA such as MTA Plus. To complete the final restoration in a single visit, a material that is compatible with MTA can be applied over partially set MTA. [13] Therefore, it is important to identify materials that can be applied over MTA that can allow for immediate final restoration placement.

Resin composites cannot be placed directly over freshly mixed MTA because they can affect the MTA setting, and the etching and rinsing of unset MTA can dislodge the material. However, placing a GIC material over partially set MTA as a part of a permanent restoration or provisional has to be considered. [13] It has been claimed that GICs can be layered over partially set MTA after 45 min, which might enable single-visit procedures. [13],[14]

Nandini et al. [15] did a study in 2007 to check the influence of GIC on the setting of MTA when used as a furcal repair material and said that GIC could be placed over MTA after 45 min for a single visit procedure. RMGICs can be placed on MTA after conditioning of the surface. [16] But they did not compare its placement with that of conventional GIC or the chemical interaction. Also Yavari et al. [17] found that an acidic environment increased the solubility of white MTA, this needs to be considered during pulp capping procedures.

However, the mixing of MTA and GIC is not advocated. According to a study conducted by Yu-Na Jeong, [18] the mixture of MTA and GIC not only showed lower setting time but also showed decreased compressive strength and increased solubility.

The observation of the formation of calcium salt crystals at the interface can be attributed to the normal maturation process of MTA in the presence of sufficient moisture as described in the previous studies, a fact that might explain its absence in the dry condition groups. It was also reported earlier that the presence of calcium salts at the MTA GIC interface was a result of the interaction of the negatively charged carboxylate anion (RCOO-) in the polyacrylic acid with the calcium in the MTA. It is not clear at this point if the presence of these crystals at the interface would affect the clinical performance of MTA or GIC however this was beyond the scope of this study.

Adhesive separation and gap formation were seen at the interface in all groups.

A reason for this observation is the setting contraction of RMGIC, which is similar to the contraction of resin composites. [19] Also the vacuum related dehydration shrinkage of GIC that is required for SEM procedures, might be a reason. [20]

Plastic molds were used to aid in studying the interface without sectioning of specimen and were standardized to 1.4 mm diameter based on previous studies. [21] A thickness of 4 mm of MTA was selected because this thickness is needed to achieve a good seal. GIC (2 mm thickness) was used based on Davidson and Mjör's [22] suggestion for bilayered restorations.

The cohesive separation on the MTA side of the dry condition groups may be related to the incomplete setting of interfacial MTA in subgroup A of group I.

These results are in agreement with the results of Ashraf et al. [23] who also found changes in the interfacial layer of MTA as well as GIC.

So to minimize the changes in physical properties of the MTA it would be advised to place the conventional GIC over the MTA after 45 min. This would be very useful in cases of pulp capping and pulpotomies. Placing the final restoration over the MTA will save not only money for the patient but also valuable time for the clinician.


   Conclusion Top


According to the results obtained in this study, the placement of MTA and GIC can be done in the same appointment without the risk of adverse interactions between the MTA and GIC.

The GIC placed after 45 min had good result over the immediately placed GIC. Among the conventional and RMGICs, the conventional GIC showed a better result than the RMGIC.

So with the results obtained, we can conclude that GIC can be placed over MTA in the same sitting with no loss of strength or detriment in their properties.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
   References Top

1.
Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod 1993;19:591-5.   Back to cited text no. 1
    
2.
Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR. Investigation of mineral trioxide aggregate for root-end filling in dogs. J Endod 1995;21:603-8.   Back to cited text no. 2
    
3.
Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP. Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc 1996;127:1491-4.  Back to cited text no. 3
    
4.
Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod 1999;25:197-205.   Back to cited text no. 4
    
5.
Shabahang S, Torabinejad M. Treatment of teeth with open apices using mineral trioxide aggregate. Pract Periodontics Aesthet Dent 2000;12:315-20; quiz 322.   Back to cited text no. 5
    
6.
Barrieshi-Nusair KM, Hammad HM. Intracoronal sealing comparison of mineral trioxide aggregate and glass ionomer. Quintessence Int 2005;36:539-45.   Back to cited text no. 6
    
7.
Naoum HJ, Chandler NP. Temporization for endodontics. Int Endod J 2002;35:964-78.   Back to cited text no. 7
    
8.
Parirokh M, Torabinejad M. Mineral trioxide aggregate: A comprehensive literature review - Part I: Chemical, physical, and antibacterial properties. J Endod 2010;36:16-27.   Back to cited text no. 8
    
9.
Camilleri J. The chemical composition of mineral trioxide aggregate. J Conserv Dent 2008;11:141-3.  Back to cited text no. 9
[PUBMED]  Medknow Journal  
10.
Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod 2006;32:569-72.   Back to cited text no. 10
    
11.
Parirokh M, Torabinejad M. Mineral trioxide aggregate: A comprehensive literature review - part III: Clinical applications, drawbacks, and mechanism of action. J Endod 2010;36:400-13.   Back to cited text no. 11
    
12.
Gancedo-Caravia L, Garcia-Barbero E. Influence of humidity and setting time on the push-out strength of mineral trioxide aggregate obturations. J Endod 2006;32:894-6.   Back to cited text no. 12
    
13.
Ballal S, Venkateshbabu N, Nandini S, Kandaswamy D. An in vitro study to assess the setting and surface crazing of conventional glass ionomer cement when layered over partially set mineral trioxide aggregate. J Endod 2008;34:478-80.  Back to cited text no. 13
    
14.
Ford TR, Torabinejad M, McKendry DJ, Hong CU, Kariyawasam SP. Use of mineral trioxide aggregate for repair of furcal perforations. Oral Surg Oral Med Oral Path Oral Radiol Endod 1995;79:756-63.  Back to cited text no. 14
    
15.
Nandini S, Ballal S, Kandaswamy D. Influence of glass-ionomer cement on the interface and setting reaction of mineral trioxide aggregate when used as a furcal repair material using laser Raman spectroscopic analysis. J Endod 2007;33:167-72.  Back to cited text no. 15
    
16.
Gulati S, Shenoy VU, Margasahayam SV. Comparison of shear bond strength of resin-modified glass ionomer to conditioned and unconditioned mineral trioxide aggregate surface: An in vitro study. J Conserv Dent 2014;17:440-3.  Back to cited text no. 16
[PUBMED]  Medknow Journal  
17.
Yavari HR, Borna Z, Rahimi S, Shahi S, Valizadeh H, Ghojazadeh M. Placement in an acidic environment increase the solubility of white mineral trioxide aggregate. J Conserv Dent 2013;16:257-60.   Back to cited text no. 17
[PUBMED]  Medknow Journal  
18.
Jeong YN, Yang SY, Park BJ, Park YJ, Hwang YC, Hwang IN, et al. Physical and chemical properties of experimental mixture of mineral trioxide aggregate and glass ionomer cement. J Kor Acad Cons Dent 2010;35:344-52.  Back to cited text no. 18
    
19.
Attin T, Buchalla W, Kielbassa AM, Helwig E. Curing shrinkage and volumetric changes of resin-modified glass ionomer restorative materials. Dent Mater 1995;11:359-62.   Back to cited text no. 19
    
20.
Yiu CK, Tay FR, King NM, Pashley DH, Carvalho RM, Carrilho MR. Interaction of resin-modified glass-ionomer cements with moist dentine. J Dent 2004;32:521-30.   Back to cited text no. 20
    
21.
Matt GD, Thorpe J, Strother JM, McClanahan SB. Comparative study of white and gray mineral trioxide aggregate (MTA) simulating a one- or two-step apical barrier technique. J Endod 2004;30:876-9.  Back to cited text no. 21
    
22.
Davidson CL, Mjör IA. Advances in Glass-Ionomer Cements. Chicago: Quintessence Publishing; 1999. p. 142-3.  Back to cited text no. 22
    
23.
Eid AA, Komabayashi T, Watanabe E, Shiraishi T, Watanabe I. Characterization of the mineral trioxide aggregate-resin modified glass ionomer cement interface in different setting conditions. J Endod 2012;38:1126-9.  Back to cited text no. 23
    

Top
Correspondence Address:
Shalini Aggarwal
Professor, Department of Endodontics and Conservative Dentistry, Dr. D. Y. Patil Dental College, Pune, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-0707.181943

Rights and Permissions


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]



 

Top
 
 
 
  Search
 
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  
 


    Abstract
   Introduction
    Materials and me...
   Results
   Discussion
   Conclusion
    References
    Article Figures

 Article Access Statistics
    Viewed1573    
    Printed23    
    Emailed0    
    PDF Downloaded279    
    Comments [Add]    

Recommend this journal