Journal of Conservative Dentistry
Home About us Editorial Board Instructions Submission Subscribe Advertise Contact e-Alerts Login 
Users Online: 495
Print this page  Email this page Bookmark this page Small font sizeDefault font sizeIncrease font size
 


 
Table of Contents   
ORIGINAL ARTICLE  
Year : 2014  |  Volume : 17  |  Issue : 1  |  Page : 65-69
Comparative radiopacity of six current adhesive systems


1 Department of Restorative Dentistry, Cesmac University Center, Maceió, Alagoas, Brazil
2 Department of Oral Radiology, Cesmac University Center, Maceió, Alagoas, Brazil
3 Faculty of Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia

Click here for correspondence address and email

Date of Submission02-Sep-2013
Date of Decision11-Sep-2013
Date of Acceptance24-Sep-2013
Date of Web Publication1-Jan-2014
 

   Abstract 

Background: The radiopacity of contemporary adhesive systems has been mentioned as the indication for replacement of restorations due to misinterpretation of radiographic images.
Aims: This study aimed to evaluate the radiopacity of contemporary bonding agents and to compare their radiodensities with those of enamel and dentin.
Methods and Materials: To measure the radiopacity, eight specimens were fabricated from Clearfil SE Bond (CF), Xeno V (XE), Adper SE Bond (ASE), Magic Bond (MB), Single Bond 2 (SB), Scotchbond Multipurpose (SM), and gutta-percha (positive control). The optical densities of enamel, dentin, the bonding agents, gutta-percha, and an aluminium (Al) step wedge were obtained from radiographic images using image analysis software.
Statistical Analysis: The radiographic density data were analyzed statistically by analysis of variance and Tukey's test (α =0.05).
Results: Significant differences were found between ASE and all other groups tested and between XE and CF. No statistical difference was observed between the radiodensity of 1 mm of Al and 1 mm of dentin, between 2 mm of Al and enamel, and between 5 mm of Al and gutta-percha. Five of the six adhesive resins had radiopacity values that fell below the value for dentin, whereas the radiopacity of ASE adhesive was greater than that of dentin but below that of enamel.
Conclusion: This investigation demonstrates that only ASE presented a radiopacity within the values of dentin and enamel. CF, XE, MB, SB, and SM adhesives are all radiolucent and require alterations to their composition to facilitate their detection by means of radiographic images.

Keywords: Densitometry; dentin-bonding agents; radiography

How to cite this article:
de Moraes Porto IC, Honório NC, Amorim DN, de Melo Franco ÁV, Penteado LM, Parolia A. Comparative radiopacity of six current adhesive systems. J Conserv Dent 2014;17:65-9

How to cite this URL:
de Moraes Porto IC, Honório NC, Amorim DN, de Melo Franco ÁV, Penteado LM, Parolia A. Comparative radiopacity of six current adhesive systems. J Conserv Dent [serial online] 2014 [cited 2018 Nov 20];17:65-9. Available from: http://www.jcd.org.in/text.asp?2014/17/1/65/124151

   Introduction Top


The phenomenon of bonding to hard dental tissues made it possible to develop new forms of cavity preparation, allowing more dental tissue conservation, a wider variety of indications of resinous materials and the ability to perform dental treatments that were impractical using conventional methods, representing great advancement in dentistry. [1] Tooth/resin bond is achieved by the application of adhesive systems, in a process known as enamel and dentin hybridization, achieved by either micromechanical means or chemical bonds, or possibly both. [2]

At present, there are an increasing variety of dental adhesive systems in the market. In addition to their biological, physical, and mechanical properties, the radiopacity of adhesives should be considered in choosing the most appropriate material for specific clinical situations. [3],[4] If the adhesive is not sufficiently radiopaque, it can represent a diagnostic challenge and may result in radiolucent images suggestive of secondary caries, gaps or lack of material at the tooth/resin interface. [5],[6] Because of such errors of judgment, dental restorations are frequently removed after detection of a dark halo in radiographs, resulting in the unnecessary removal of healthy dental tissue, putting at risk the pulpal health. [7],[8],[9] Therefore, such material must be sufficiently radiopaque to allow it to be observed radiographically and let the clinician to distinguish the material from both healthy and demineralized tissues. [6],[10]

The radiopacity of contemporary adhesive systems is little known among dentists, however; this concern has been discussed in a few published studies, [3],[11] and it has been mentioned as the indication for replacement due to misinterpretation of radiographic images. [5] The radiopacity of bond agents tested depend on their inorganic filler content, [3] indicating the need try out new materials introduced in market.

For that reason, it is important that all materials added to the tooth, such as the lining, base, dentinal adhesive, or restorative materials, have adequate radiopacity to allow them to be radiographically detected, and to reduce the risk of erroneous diagnoses of secondary caries and empty spaces in restorations. Therefore, this study aimed to evaluate the radiopacity of contemporary dental adhesives and compare them with healthy tooth structure.


   Materials and Methods Top


The study was done in accordance with the ethical principles originating in the Declaration of Helsinki and written informed consent was obtained from the donator of the tooth. Eight samples were prepared for each bonding agent tested (Clearfil™ SE Bond (CF)-Kuraray America Inc., USA; Xeno™ V (XE)- Dentsply De Trey GmbH, Germany; Adper SE plus (ASE)-3M/ESPE Dental Products, USA; Single Bond 2 (SB)-3M/ESPE Dental Products, USA; Scotchbond Multipurpose (SM)-3M/ESPE Dental Products, USA; Magic Bond DE (MB)-Vigodent Ind. Com., Brazil) using a rectangular acrylic mold with holes measuring 2 mm in diameter and 1 mm in thickness placed on a glass plate and filled with the adhesive systems. The solvent was evaporated using a gentle air flow from a dental syringe and adhesives polymerized for 40 s with a light-emitting diode source (Emiter B; Schuster Com. Equip. Odontolσgicos Ltda, Santa Maria, Brazil - 1135 mW/cm 2 ).

From CF, SM, and ASE adhesive systems, only bond resin (Bond and B liquid, respectively) was used without needs evaporation solvent phase. Enamel (E) and dentin (D) specimens were obtained from 1.0-mm-thick longitudinal sections of one freshly extracted, human, caries-free, third molar obtained from a 22-year-old male patient. The tooth was autoclaved (20 min/121°C) and then a slice was cut using a slow speed diamond disc (KG Sorensen, Barueri, Brazil) and kept in tap water until use. A 99.95% pure aluminium (Al) 8-stepwedge with 1-mm per step was used as an internal radiographic standard and as a gauge to calculate the radiopacity of each material in terms of Al thickness. Gutta-percha (G) was used as positive control.

The acrylic mold with polymerized dentin adhesives and gutta-percha (positive control) in the holes, an Al step wedge and tooth slice, [Figure 1], were captured on ultraspeed occlusal film (Eastman Kodak Co., Rochester, United States of America). To certify that the acrylic mold would not interfere with the radiographic image of the materials, an initial radiographic image was taken with an occlusal film and the step wedge only. The films were exposed for 0.20 s, with total filtration equivalent to 3.81 mm of Al at 70 kV, 7 mA, and 400-mm target film distance with a Time x 70C dental X-ray unit (Gnatus Equipamentos Médicos Odontológicos Ltd., São Paulo, Brazil) and manually processed in fresh chemicals using temperature-time table. To assure that the incidence and the object-to-focus distance were standardized an acrylic device was used. This device maintained the head of the X-ray machine in the same position.
Figure 1: Sample discs of the bonding agents (at the bottom of the acrylic plate), from left to right: Xeno V (1), Magic Bond DE (2), Clearfi l SE Bond (3), Adper SE Bond (4), Single Bond 2 (5), Scotchbond Multipurpose (6). Gutta-percha (7) in the mid-part on the right-hand side, aluminum step wedge, and tooth slice used for comparison

Click here to view


The radiographs [Figure 2] were digitized using a scanner with a transparent adapter and 600 dpi resolution (Astra 1220S, Umax, Taiwan, China). The images were saved as uncompressed TIFF files. All images were enlarged 2:1 in order to accurately define the areas to be measured. The digital images were analyzed using a computer graphics program (ImageJ, National Institutes of Health, Bethesda, United States of America). Three reference points at bonding agent, dentin, enamel, Al, and gutta-percha area of each sample were randomly chosen on the first radiograph and repeated for the other seven radiographs, and the optical density of each one was measured according to a scale of radiopacity also provided by the computer. The average gray scale values from 0 (black) to 255 (white) for selected regions of the image were measured using the histogram tool. The histogram provides numeric data in pixels for the optical density [OD] in the selected area, based on the 256 values of gray scale available in the system, providing the mean and standard deviation (SD). Care was taken to always measure in the same region of the radiographic images. Three OD readings were obtained from each image and the arithmetic mean calculated, corresponding to the density value of the item. One previously calibrated operator carried out all experimental procedures.

Data were statistically analyzed using one-way analysis of variance (ANOVA) and Tukey's test (SPSS version 17, SPSS Inc., Chicago, IL, USA) with level of significance set at 0.05.
Figure 2: Radiographic image. Note that only one the adhesives, Adper SE Bond (4), can be clearly seen on the radiograph.

Click here to view



   Results Top


The mean OD and SD of the bond agents, enamel, dentin, gutta-percha, and 1 mm of Al are shown in [Table 1]. Radiographically, five of the six bond agents tested presented a much lower OD than dentin, with a statistically significant difference (P < 0.05). The ANOVA showed statistically significant differences between the ASE bond agent and all the other groups tested (P = 0.000), as well as between XE and CF (P = 0.001). No statistical difference in radiodensity was observed between 1 mm of Al and 1 mm of dentin, between 2 mm of Al and 1 mm of enamel, and between 5 mm of Al and gutta-percha (P > 0.05). ASE showed the highest percentage radiodensity, higher than 1 mm of dentin (112.28%) and lower than 1 mm of enamel (85.27%). There was no statistically significant difference between XE and MB, SB and SM; and between CF and MB, SB and SM. [Figure 3] summarizes the OD measurements of the tested adhesives, dentin, enamel, and gutta-percha, compared with the OD of 1 mm of Al.
Figure 3: Radiopacity of the different materials tested in this study compared with 1 mm Al.

Click here to view
Table 1: Mean OD and standard deviation of all the groups tested

Click here to view



   Discussion Top


Radiopacity is one of the many desirable properties of most dental materials [9] and is an important characteristic in adhesive procedures in dentistry. There are several studies on the radiopacity of composites in the literature; however, few studies regarding comparing the radiopaque characteristics of bonding agents. [3],[4],[11]

In the present study, all bonding agents tested had a lower radiopacity than tooth enamel. Five bonding agents were considered radiolucent and only one (ASE) was considered radiopaque, with an OD higher than that of 1 mm of Al and 1 mm of dentin. The radiopacity of dental materials is usually expressed in terms of equivalent thickness in Al (mm). All restorative material should have a radiopacity equal to or higher than the radiographic density of dentin, which in turn has a radiopacity similar to that of Al. Although no maximum limit has been established, some authors consider that this limit must not exceed the radiopacity of enamel. [12],[13]

In accordance with the International Standardization Organization, [14] the restorative material must be at least as radiopaque as the same thickness of pure Al. This means that a material specimen with same thickness would have a radiopacity roughly equal to dentin and so can it be considered adequate to be used in different clinical situations. In specification no. 27 of the American Dental Association, [15],[16] it is also recommended that these materials should have a radiopacity equivalent to that of 1 mm of pure Al, which is approximately the same radiopacity as natural dentin.

The question of how the radiopacity of a restorative material should function in order to obtain the ideal diagnosis has been investigated by several authors. [12],[17],[18] Certain characteristics of the adhesive systems, such as application method and filler content, may affect radiographic interpretation. [5] When dental adhesives are applied in thin layers present a high risk on incomplete polymerization which might lead to a compromised restoration. [19] To the contrary, a thick adhesive layer how that is present on pooling of adhesives on the restoration corners, mainly on the gingival walls, is showed on radiography like radiolucent areas around the restorations and can lead to false replacement and non-replacement decisions. [9],[20] On the other hand, a material with high radiopacity may difficult the diagnosis of incipient carious lesions by masking the image of the lesion, superimposing the image of the restorative material, [20] since the radiographic images of common use in dental practice are in two dimensions. To reach a correct diagnosis, a material with an ideal radiopacity is necessary. [9]

Bond agents, such as resins, with little or no inorganic content may have inadequate radiopacity, making it difficult to identify the limit between the cavity wall and the restorative material. This is especially important when the application of adhesive to the cavity surface has not resulted in a sufficiently thin pellicle (~200 μm) before polymerization. [21] Even thinner pellicles (~40 μm) can be detected radiographically [6] and if not radiopaque enough it can confused with marginal gaps, secondary caries, wear, and absence of restorative material. [6] In these cases, the interpretation of the radiographs and the decision on whether or not to remove a restoration are heavily dependent on the dentist's experience. [22]

Radiopacity of resin-based materials can be enhanced by adding the inorganic constituents, such as glass particles that contain atoms of heavy metals, such as titanium oxide (TiO 2 ), yttrium, ytterbium, zirconium, boron silicate, barium or lithium Al silicate, zinc or strontium glass. [15],[23],[24],[25] The great difficulty in formulating a radiopaque adhesive is the stability of the particles in the agent that will provide radiopacity, as the particles tend to agglomerate and precipitate, in addition to giving the adhesive a more opaque coloring. [23] This may make it difficult to activate the adhesive with visible light, and deeper layers of the adhesive may remain unpolymerized, compromising the bond.

Although the influence of particles on the physical and mechanical properties of dental adhesives has been studied extensively, these studies have generally used oxides with low radiopacity, such as silica, with low contrast between the dental adhesive and the teeth. [24],[25] To allow marginal gaps to be distinguished from thick layers of dental adhesive, adhesive systems must contain particles with higher radiopacity than dentin. [8]

The radiopacity of adhesive systems depends on the presence of elements with a high atomic weight in the inorganic filler content. [3] According to the manufacturers, XE and SM bond agents do not contain components that provide radiodensity characteristics.

The adhesives with filler included in this study are characterized by the presence of silica, quartz, zirconium, and silicon dioxide. The use of elements with low atomic weight, such as quartz (SiO2) and silicon (Si), results in radiolucent materials. [4] This may explains radiolucent characteristic of CF, SB, and MB adhesives detected on this study.

On the contrary, barium (Ba), strontium (Sr), and zirconium (Zr) increase radiopacity due to their high atomic weight. ASE contains nanoparticles of zirconium (ZrO 2 ), which gives it the recorded radiopacity. The scarce number of studies on the radiopacity of adhesive systems did not allow complete comparison of the results obtained; only three of the adhesives used in this research were included in previous studies. [3],[4]

Pamir et al., [5] recorded a high number of false-positives, which indicated the replacement of perfectly adapted restorations because a radiographic image suggested a lack of restorative material or secondary caries when SB and CF adhesives were used. In this study, it was found that these two adhesives were radiolucent and this is possibly due to the low percentage of load and the nature of the filler particles (silica), which led to low radiographic contrast.

Radiopacity measured by the pixel intensity of the adhesive systems in radiographic images was not capable of detecting differences between CF, SB, MB, XE, and SM adhesives. The radiopacity of these adhesive systems is insufficient to allow them to be distinguished from dentin and visible in the radiograph.

Detection of secondary caries is not an easy task. To differentiate these lesions from a lack of material under a restoration, two conditions that are radiographically perceived as radiolucent areas, is extremely difficult and may lead to restorations being replaced due to false diagnoses because the interpretation from the radiographic findings is not compatible with the real situation. The use of radiopaque adhesive systems could increase the number of correct decisions about resin composite restoration replacement.


   Conclusion Top


This investigation demonstrates that of the six bond agents tested, only Adper™ SE Bond presented a radiopacity within the values of dentin and enamel. CF, XE, MB, SB, and SM bond agents are all radiolucent and require alterations to their composition to facilitate their detection by means of radiographic images.

 
   References Top

1.Mount GJ. A new paradigm for operative dentistry. Aust Dent J 2007;52:264-70.  Back to cited text no. 1
[PUBMED]    
2.Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, et al. Buonocore memorial lecture. Adhesion to enamel and dentin: Current status and future challenges. Oper Dent 2003;28:215-35.  Back to cited text no. 2
    
3.Hotta M, Yamamoto K. Comparative radiopacity of bonding agents. J Adhes Dent 2009;11:207-12.  Back to cited text no. 3
[PUBMED]    
4.Oztas B, Kursun S, Dinc G, Kamburoglu K. Radiopacity evaluation of composite restorative resins and bonding agents using digital and film x-ray systems. Eur J Dent 2012;6:115-22.  Back to cited text no. 4
    
5.Pamir T, Kaya AD, Baksi BG, Sen BH, Boyacioglu H. The influence of bonding agents on the decision to replace composite restorations. Oper Dent 2010;35:572-8.  Back to cited text no. 5
[PUBMED]    
6.Kurþun S, Dinc G, Oztaþ B, Yuksel S, Kamburoðlu K. The visibility of secondary caries under bonding agents with two different imaging modalities. Dent Mater J 2012;31:975-9.  Back to cited text no. 6
    
7.Espelid I, Tveit AB, Erickson RL, Keck SC, Glasspoole EA. Radiopacity of restorations and detection of secondary caries. Dent Mater 1991;7:114-7.  Back to cited text no. 7
[PUBMED]    
8.Shulz H, Schimmoeller B, Pratsinis SE, Salz U, Bock T. Radiopaque dental adhesives: Dispersion of flame-made Ta2O5/SiO2 nanoparticles in methacrylic matrices. J Dent 2008;36:579-87.  Back to cited text no. 8
    
9.Collares FM, Leitune VC, Ogliari FA, Piva E, Fontanella VR, Samuel SM. Influence of the composition of an experimental adhesive on conversion kinetics, flexural strength and radiodensity. Rev Odonto Ciênc 2009;24:414-9.  Back to cited text no. 9
    
10.Krejci I, Lutz F, Sener B, Jenss J. The x-ray opacity of tooth-coloring inlay materials and composite cements. Schweiz Monatsschr Zahnmed 1991;101:299-304.  Back to cited text no. 10
    
11.Bueno M, Moraes RR, Azevedo EC, Baldissera RA. Radiographic view of adhesive layer and relationship with marginal leakage in class II composite resin restorations. Arq Odontol 2007;43:149-54.  Back to cited text no. 11
    
12.Salzedas LM, Louzada MJ, de Oliveira Filho AB. Radiopacity of restorative materials using digital images J Appl Oral Sci 2006;14:147-52.  Back to cited text no. 12
    
13.Devito KL, Ortega AI, Haiter-Neto F. Radiopacity of calcium hydroxide cement compared with human tooth structure. J Appl Oral Sci 2004;12:290-3.  Back to cited text no. 13
    
14.International Organization for Standardization ISO Standard 4049: Dentistry Resin-based Filling Materials 7.11.1-4, International Organization for Standardization, Geneva, Switzerland. 2000.  Back to cited text no. 14
    
15.The desirability of using radiopaque plastics in dentistry: A status report. Council on Dental Materials, Instruments, and Equipment. J Am Dent Assoc 1981;102:347-9.  Back to cited text no. 15
    
16.Phillips RW, Lutz F. Status report on posterior composites. Council on Dental Materials, Instruments, and Equipment. J Am Dent Assoc 1983;107:74-6.  Back to cited text no. 16
    
17.Ergüçü Z, Türkün LS, Onem E, Güneri P. Comparative radiopacity of six flowable resin composites. Oper Dent 2010;35:436-40.  Back to cited text no. 17
    
18.Jandt KD, Al-Jasser AM, Al-Ateeq K, Vowles RW, Allen GC. Mechanical properties and radiopacity of experimental glass-silica-metal hybrid composites. Dent Mater 2002;18:429-35.  Back to cited text no. 18
    
19.Lin NJ, Bailey LO, Becker ML, Washburn NR, Henderson LA. Macrophage response to methacrylate conversion using a gradient approach. Acta Biomater 2007;3:163-73.  Back to cited text no. 19
    
20.Goshima T, Goshima Y. Radiographic detection of recurrent carious lesions associated with composite restorations. Oral Surg Oral Med Oral Pathol 1990;70:236-9.  Back to cited text no. 20
    
21.Akinmade AO, Nicholson JW. Effect of adhesive layer thickness on the bond strength of a zinc polycarboxylate dental cement. Biomaterials 1995;16:149-54.  Back to cited text no. 21
    
22.Hewlett ER, Atchison KA, White SC, Flack V. Radiographic secondary caries prevalence in teeth with clinically defective restorations. J Dent Res 1993;72:1604-8.  Back to cited text no. 22
    
23.Klapdohr S, Moszner N. New inorganic components for dental filling composites. Monatshefte Für Chemie 2005;136:21-45.  Back to cited text no. 23
    
24.Lee YK, Pinzon LM, O'Keefe KL, Powers JM. Effect of filler addition on the bonding parameters of dentin bonding adhesives bonded to human dentin. Am J Dent 2006;19:23-7.  Back to cited text no. 24
    
25.Tay FR, Moulding KM, Pashley DH. Distribution of nanofillers from a simplified-step adhesive in acid-conditioned dentin. J Adhes Dent 1999;1:103-17.  Back to cited text no. 25
    

Top
Correspondence Address:
Isabel Cristina Celerino de Moraes Porto
Department of Restorative Dentistry, Cesmac University Center, Rua Cônego Machado, 918, Farol, CEP: 57051 160, Maceió, Alagoas

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-0707.124151

Rights and Permissions


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1]



 

Top
 
 
 
  Search
 
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  
 


    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed1727    
    Printed45    
    Emailed0    
    PDF Downloaded129    
    Comments [Add]    

Recommend this journal